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ABSTRACT 
 

 

In today’s generation the requirement of very high-speed operations in processors is 

increased. To speed up the process of computation, arithmetic operations such as addition 

,subtraction and multiplication are used in various digital circuits. Floating point 

multiplication is a critical operation in high power computing applications such as image 

processing, digital signal processing. 

The main multiplier characteristics are good accuracy, increase in speed, reduction in area 

and less power consumption. As speed is always a constraint in the multiplication 

operation, increase in speed can be achieved by reducing the number of stages in the 

calculation process. Since the multiplier requires the longest delay among the basic 

operational blocks in digital system, the critical path is determined more by the multiplier. 

Furthermore, multiplier consumes much area and dissipates more power. Hence designing 

multipliers which offer either of the following design targets – high speed, lower power 

consumption, less area or even a combination of them is our prime concern. 

 
 

The main aim of the project is to achieve the above design targets of a floating point 

multiplier using Canonical Signed Digit (CSD) algorithm. 
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CHAPTER1 

 

INTRODUCTION 

The multiplication operation is one of the important operations in digital   signal 

processing (DSP) used in applications such as the Discrete Fourier Transform, Fast 

Fourier Transform, convolution or digital filters. Thus, there has been a continuous  research 

for refining predefined multipliers and developing new approaches for efficient multiplier 

architecture. There are many existing multiplier architectures such as Shift and Add 

multiplier, Booth multiplier, Wallace tree multiplier, Array multiplier etc. Shift and Add 

multiplier is the simplest among all however, large number of gates are required making 

time inefficient architecture. High performance multipliers are preferred with regular 

structures or reduced number of partial products. The array multiplier and Wallace tree 

multiplier are based on the arrangement of adders aiming reduction in overall critical path 

of the multiplication operation. 

Many significant amounts of work have been published using the concept of Vedic 

mathematics, obtaining efficient multiplier, divider, squaring and cube architectures. The 

efficiency of multiplier is based on factors: (i) larger operation is reduced to the smaller 

operation. (ii) the speed of addition operation in accumulation of partial products is 

increased using carry select adders. The multiplier architecture is found to be efficient as 

compared to the state-of-art Vedic multipliers. The reduction in number of stages in a Vedic 

multiplication process leads to significant reduction in the propagation delay along with 

switching power consumption. The multiplication operation is based on Urdhva 

Tiryagbhyam algorithm of Vedic mathematics. 

Generally, most of the multipliers consumes much area, consumes more power and work 

with less accuracy. hence designing multipliers which offer either of the following design 

targets-high speed, low power consumption, less area or even a combination of all these is 

of substantial research interest. 
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1.1 PROJECT OBJECTIVE 

 
The main aim of the project is to simulate and implement FPM(Floating Point Multiplication) 

multiplication using CSD(Canonical Signed Digit)algorithm and compare it with existing 

multipliers. Vivado design suite is used for simulation. Synthesis and implementation is done 

using basys 3 DDR board, which is ready to use digital circuit development platform based 

on the latest Artix -7 Field Programmable Gate Array (FPGA) from Xilinx. The performance 

is compared in terms of power, area and delay 

 

1.2 PROJECT OUTLINE 

This project report is presented over the 4 remaining chapters. Chapter 2 presents Floating 

Point Multiplication and provides the fundamentals of various adders and multipliers. Chapter 

3 explains about Canonical Signed Digit (CSD) algorithm. Chapter 4 describes simulation and 

synthesis tools necessary to simulate and synthesize the given hardware using Verilog 

Hardware Description Language. Chapter 5 presents the simulation results which are 

simulated using Vivado Design Suite simulator. Also the synthesis and implementation results 

are carried out using basys 3 DDR board, which is ready to use digital circuit development 

platform based on the latest Artix -7 Field Programmable Gate Array (FPGA) from Xilinx. 

Finally, the results of the project work and conclusions are drawn. 
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CHAPTER 2 

FLOATING POINT MULTIPLICATION 
 

 

   2.1 NUMBER SYSTEM 

The number system is a system generally used for representing or expressing numbers. It is a 

mathematical notation which can be a combination of numbers and alphabets. There are 

various kinds of number systems like binary, decimal, octal, hexadecimal based on the base. 

The base is also called as “radix”. 

 

2.1.1FIXED POINT 

The term 'fixed point' refers to the corresponding manner in which the numbers are 

represented. A fixed point decimal number system has a limited number of digits and a 

decimal point in a fixed location. 

To define a fixed-point type conceptually, all we need are two criterions: width of the number 

and binary point position within the number 

We will use the notation fixed <w, b> where w stands for the number of bits used as a whole 

(the Width of a number), and b stands for the position of binary point counting from the Least 

Significant Bit(LSB) (counting from 0). 

For example, fixed<8,3> denotes an 8-bit fixed point number, of which 3 right most bits are 

fractional. Therefore, the bit pattern: 

 represents a real number: 

00010.110 

= 1 * 2^1 + 1 * 2^-1 + 1 * 2^-2 

= 2 + 0.5 + 0.25= 2.75 

Fixed point numbers are indeed an in depth relative to integer representation. The two only 

differs within the position of binary point. In fact, you would possibly even consider integer 

representation as a "special case" of fixed-point numbers, where the binary point is at position 

0. All the arithmetic operations a computer can operate integer can therefore be applied to 

fixed point number also. The disadvantage of number, is than in fact the loss of range and 
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precision. For example, in a fixed representation, our fractional part is only precise to a 

quantum of 0.5. We cannot represent number like 0.75. We can represent 0.75 with fixed, but 

then we lose range on the integer part. 

2.1.2 FLOATING POINT 

The floating point is the arithmetic using the representation of real numbers as an 

approximation in supporting trade-off between range and precision. For this reason, floating-

point computation is usually found in systems which include very small and really large real 

numbers, which require fast processing times. 

In computers the real numbers   are   represented in floating point (FP) format. Usually this 

suggests that the amount is split into exponent and fraction, which is additionally referred  to 

as significand or mantissa. A scientific notation with   a symbol   , exponent, mantissa 

called  floating  point  representation is employed for the important numbers. Its format is 

Real number→mantissa×base^exponent 

Where significand is an integer, base is an integer greater than or adequate to two, and 

exponent is additionally an integer. For example: 

1.2345 = 12345 x 10^-4 

2.1.3 SINGLE PRECISION FLOATING POINT MULTIPLICATION 

Most modern computers use Institute of Electrical and Electronics Engineers (IEEE) 754 

standard for representation of floating-point numbers. One of the most commonly used 

formats is the binary32 format of IEEE 754: 

Sign bit-1 bit Exponent-8 bits 

Significand/mantissa-23 bits 

 

Note that exponent is encoded using an offset-binary representation, which suggests it is often 

off by 127. So, if usually 10000000 in binary would be 128 in decimal, in single- precision 

the worth of exponent is: 

exponent=128−offset=128−127=1 
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2.1.4 FLOATING POINT MULTIPLICATION 

From the literature, it is observed that various multipliers such as Array multiplier, Vedic 

multiplier and Radix based multipliers are involved in multiplication. 

In general, Floating Point Multiplication (FPM) of two numbers involves four steps: 

• Non-signed multiplication of mantissas 

• Normalization of the result 

• Addition of the exponents, taking into account the bias. 

• Calculation of the sign. 

Let us consider two numbers 

a=6.96875 

b=-0.3418 

Normalized values and biased exponents: 

a=6.96875=1.7421875×2^2 b=−0.3418=−1.3672×2^−2 

The exponents: 

Exponent a=2 Exponent b=−2 

The numbers in IEEE754 binary32: a=01000000110111110000000000000000(binary32) 

=10111110101011110000000001101001(binary32) 

The mantissa could be rewritten as following totaling 24 bits per operand: 

Mantissa a=1.101111100000000000000002 Mantissa b=1.010111100000000011010012 

Their multiplication totals in 48 bits: 

Mantissa=1.001100001110001010110110111011100000000000000002 

Which has to be truncated to 24 bits: 

mantissaa×b=1.001100001110001010110112=2.3819186687469482421875 10 

The exponents 2 and -2 can easily be summed up so only last thing to do is to normalize 

fraction which means that the resulting number is: 

a×b=−2.3819186687469482421875=−1.19095933437347412109375×21 

Which could be written in IEEE 754 binary32 format as: 

a×b=01000000000110000111000101011011binary32 
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2.2 ADDERS 

An adder is a digital circuit which performs addition of numbers. In many computers and 

other types of processors, adders are used in the ALU and also in other parts of the processors. 

Adders are used to calculate addresses, table indices and are also used to perform increment 

and decrement operations. The most common adders operate on binary  numbers. 

 

2.2.1 HALF ADDER(HA) 

A combinational circuit that performs the addition of two single bits is called Half 

Adder. The half adder adds two binary digits A and B. It has two outputs, sum and carry. The 

carry signal represents an overflow into the next digit of a multi-digit addition. To design a 

simple half adder we use an XOR gate for sum and an AND gate for carry. 

 

 

  
 

 

 

 

 

 

 

                                            FIG 1 Half adder logic diagram. 

 

Table 1 Half adder truth table 

A B SUM CARRY 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 1 1 
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2.2.2  FULL ADDER(FA) 

A combinational logic circuit that performs the addition of three single bits and produces two 

outputs is called Full Adder. A, B and Cin are the inputs. Sum and C-OUT are the outputs. In 

half adder we can add 2-bit binary numbers but we cannot add carry bit along with the two 

binary numbers. But in full adder we can carry in bit along with two binary numbers. 

        Table 2  Full adder truth table 

A B Cin S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 0 1 

 

Fig 2 Full adder logic diagram 
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2.2.3 RIPPLE CARRY ADDER(RCA) 

Ripple carry adder is a structure of multiple full adders is cascaded in a manner to 

gives the results of the addition of an n bit binary sequence and the carry will be 

generated at every full adder stage. These carry output at each full adder stage is forwarded 

to its next full adder and applied as a carry input to it. This process continues up to its last 

stage of adder circuit. So, each carry output bit is rippled to the next stage of a full adder and 

hence named as “RIPPLE CARRY ADDER”. The most important feature of it is to add the 

input bit sequences if the sequence is 4 bit or 5 bit or any. 

 There are various types in ripple-carry adders. They are: 

• 4-bit ripple-carry adder 

• 8-bit ripple-carry adder 

• 16-bit ripple-carry adder 

 

 

Fig 3 Ripple Carry adder logic diagram 

 

2.2.4 CARRY LOOK AHEAD ADDER(CLA) 

In ripple carry adders, for each adder block, the two bits that are to be added are available 

instantly. However, each adder block waits for the carry to arrive from its previous block. So, 

it is not possible to generate the sum and carry of any block until the input carry is known. 

The block waits for the block to produce its carry. So, there will be a considerable time delay 

which is carry propagation delay. 

A carry look-ahead adder reduces the propagation delay by introducing more complex 

hardware. In this design, the ripple carry design is suitably transformed such that the carry 

logic over fixed groups of bits of the adder is reduced to two-level logic. 
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                                                Fig 4 Carry look ahead adder 

 

2.2.5 CARRY SAVE ADDER(CSA) 

A carry save adder is a type of digital adder used in computer microarchitecture to compute 

the sum of three or more n-bit numbers in binary. It differs from other digital adders in that it 

outputs two numbers of the same dimensions as the inputs, one which is a sequence of partial 

sum bits and another which sequence of carry bits. 
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                                                          Fig 5 Carry save adder 

2.2.6 CARRY- SELECT ADDER(CA) 

In electronics, a carry-select adder is a particular way to implement an adder which is a logic 

element that computes the (n+1)-bit sum of two n-bit numbers. 

The carry-select adder generally consists of two ripple carry adders and a multiplexer. Adding 

two n-bit numbers with a carry-select adder is done with two adders (therefore two ripple 

carry adders), in order to perform the calculation twice, one time with the assumption of the 

carry-in being zero and the other assuming it will be one. After the two results are calculated, 

the correct sum, as well as the correct carry-out, is then selected with the multiplexer once the 

correct carry-in is known. 

 

Fig 6 Carry select adder 
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Above is the basic building block of a carry-select adder, where the block size is 4. Two 4-bit 

ripple carry adders are multiplexed together, where the resulting carry and sum bits are 

selected by the carry-in. Since one ripple carry adder assumes a carry-in of 0, and the other 

assumes a carry-in of 1, selecting which adder had the correct assumption via the actual carry-

in yields the desired result. 

2.2.7 SUPERIOUS POWER SUPPRESSION TECHNIQUE ADDER(SPST) 

Adder is a circuit that is combinational and calculates the sum of three (full adder) or two 

(half adder) inputs. Full adder can be cascaded to produce n-stages of adder. This cascaded 

adder structure is called as parallel adder. The sum and carry of any stage cannot be calculated 

until the input carry occurs, this leads to a delay in the addition process. In order to overcome 

the delay, carry look ahead adder is proposed which is said to be a fast adder. To improve the 

speed of carry, look ahead adder, Spurious Power Suppression Technique (SPST) is used. 

Fig 7 SPST adder 

 

The SPST has a detection logic circuit find out if a transition in data bits of the result will 

occur in circuits, e.g., multipliers or adders. When a part of the data doesn’t cause any change 

in the final result of the circuit, that portion of the data is latched to avoid unwanted transitions 

inside the processing units. 
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2.2.8 Comparison Between Different Types Of Adders: 

    Table 3 Comparison between different types of Adders 

 

S.No Adder Type No.Of AND Gates No.Of EX-OR 

Gates 

No.Of OR Gates 

1 Half-Adder 1 1 - 

2 Full Adder 2 2 1 

3 8-Bit Ripple 

Carry Adder 

16 16 8 

4 8-Bit Carry – 

Look Ahead 

Adder 

16 16 8 

5 4-Bit Carry 

Save Adder 

16 16 8 

6 4-Bit Carry 

Select Adder 

16 16 8 

 

2.3 MULTIPLIERS 

Today’s processors require a very high-speed operation. Arithmetic operations such as 

addition, subtraction and multiplication are used in various digital circuits for high-speed 

computation. Multiplication is the basic arithmetic operation in signal processing. All the 

signal and data processing operations like digital signal processing contain multiplication. 

Speed is an essential parameter in a multiplication operation. It can be increased by reducing 

the number of steps in the computation process. In a digital system design, the parameters that 

determine the performance of the system are speed, power and area. As the multiplier requires 

the longest delay among the basic operational blocks in a digital system, the critical path is 

determined more by the multiplier. Also, a multiplier consumes much area and dissipates more 

power. Hence, designing multipliers which offer a combination of the above parameters is 

better. 
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A multiplier is one of the key hardware blocks in many digital signal processing systems. 

Some of the DSP applications where a multiplier plays an important role include digital 

filters, digital communications and spectral analysis. Many current DSP applications are 

targeted at portable, battery-operated systems, in order that power dissipation becomes 

one among the first design constraints. As multipliers are complex circuits and have to 

operate at a high system clock rate, reducing the delay of    a    multiplier    is an    important 

a    part     of satisfying    the    overall    design. This operation involves two major steps: 

Partial product generation and accumulation. 

2.3.1 PARTIAL PRODUCTS 

Formation of partial products 

The basic algorithm for multiplication of two binary numbers, M(multiplier) and 

N(multiplicand) makes use of the distributive property of multiplication. That is, if M can be 

written as a sum of smaller numbers 

M.N = (M0+M1+………. +Mm-1). N = M0N+M1N+ ..............+Mm-1N 
Also, a multiplier consumes most of the area and dissipates more power. Hence designing 

multipliers which offer either of the following design targets – high speed, low power 

consumption, less area or even a combination of them is preferred. 

2.3.2 TYPES OF MULTIPLIERS 

a. Shift-and-Add Multiplication  

In this method, we add a number with itself and rotate the other number each time and 

shift it by one bit to left along with the carry. If carry is present add those two numbers. 

Fig 8 Shift- and add multiplier 
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This algorithm adds the multiplicand to itself by M times, where M denotes the multiplier. 

To multiply these two numbers this 

algorithm takes the digits of the multiplier and places the intermediate product in the 

appropriate position to the left of earlier results.
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CHAPTER 3 

CANONICAL SIGNED DIGIT 

CSD representations have proven to be useful in implementating multipliers with reduced 

complexity, because cost of multiplication is a direct function of non zero bits in the multiplier 

and as CSD algorithm helps in reducing the number of these non zero bits it is very useful in 

implementing efficient multiplier. 

The CSD format aims to scale back the amount of additives during multiplication. The CSD 

format features a ternary set as against a binary set-in number representation. The symbols 

utilized in this format are {-1, 0, 1}. The goal is to group consecutive 1s and alter them to 

a ternary representation from binary representation. This is done ranging from the rightmost 

1 and proceeding left until the last 1. So, this never has adjacent non- zero bits. It is proved 

that the number of operations never exceeds n/2 and on a mean, it  are often reduced to n/3. 

 

3.1 Canonical Signed Digit Algorithm 

Conversion from a binary representation to CSD representation requires the following 

steps: 

• Observe where there are two consecutive 1’s and convert the right most 1 into -1 

• Add +1 to the next bits 

 
The CSD presentation of a number is unique. The number of nonzero digits is   minimal. 

There cannot be two consecutive non-zero digits 

for example, the binary value 1 1 1 1 1 (decimal number 31)       could be written as 

the                                                                                                                                                                                                                               

 signed-digit value 1 0 0 0 0 -1 = 25 - 20 =d31 

             CSD representation of integers 1, 2, … 10 is as follows: 
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Table 4 Binary to CSD conversion 

B2 B1 B0 C3 C2 C1 C0 

0 0 0 0 0 0 0 

0 0 1 0 0 0 1 

0 1 0 0 0 1 0 

0 1 1 0 1 0 -1 

1 0 0 0 1 0 0 

1 0 1 0 1 0 1 

1 1 0 1 0 -1 0 

1 1 1 1 0 0 -1 

 

 
Converting binary number into CSD number can be achieved by continuously     comparing  

     adjacent two bits from the LSB to MSB. And to represent one bit in the CSD representation 

     require two binary bits. 

     So, -1 will be represented with 11. Here MSB represents sign bit and LSB represents main  

     bit. 

     If the sign bit is 1; 

                Then it is a negative number 

     Else; 

                It is a positive number. i.e., sign bit ==0 

       

And the main bit represents magnitude of the CSD bit. 

As the conversion process  needs to compare present bit and next b it of the binary number  

and also the carry of the previous comparison as this generated carry also makes impact on  

     the present  bit  of  CSD number. 

The truth table for this conversion which consists of present and next bit of binary number  

And previous carry as inputs and sign and main bits of CSD number and present carry   as  

output is as follows: 

 

 

If the input is 4 bit : A3 A2 A1 A0 
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Table 5 Binary to CSD conv. Truth Table 

A1 A0 C(i) sign main C(i+1) 

0 0 0 0 0 0 

0 0 1 0 1 0 

0 1 0 0 1 0 

0 1 1 0 0 1 

1 0 0 0 0 0 

1 0 1 1 1 1 

1 1 0 1 1 1 

1 1 1 0 0 1 

                             

Same truth table  works  for  remaining  bit comparisons. By using above truth table and 
k-map reduction technique calculating the Boolean expressions for sign bit, main bit and  

present carry. 

    

DERIVATIONS FROM TRUTH TABLE 

SIGN: 

 

 

 A1.A0’.Carry(i)+A1.A0.Carry(i)’ 

 A1(A0’.Carry(i)+A0.Carry(i)’ 

                     Sign =A1(A0  ^  C(i)).  
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MAIN: 

 

 

 A0’.Carry(i)+A0.Carry(i)’ 

                     Main=A0 ^ C(i).  

C(i+1): 

 

 

                      C(i+1) =A0.C(i)+A1.C(i)+A1.A0. 

 

These Boolean expressions are used to form a circuit called CSD converter    circuit.   This 

circuit consists of Two adjacent bits of binary number as inputs along with   previous carry. 

And outputs of this circuit will be sign, main bits of CSD number and present   carry which 

will be carried forward to next comparison. 

 

If A0 and A1 are adjacent   bits to  be  compared and C0 is the previous carry and om0 and  

os0   are   main and sign bits of CSD number and  c1  is  the  present  carry   then  the  CSD 

converter circuit is as follows: 

 
FIG 9 CSD Converter Circuit 

 

Now to convert given entire binary number into CSD number this CSD converter circuit  

will be used repeatedly. 

 If the input is A= A3 A2 A1 A0 

 And outputs: 
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 Main = om4 om3 om2 om1 om0 

 Sign = os4 os3 os2 os1 os0 

 And always the first previous carry will be taken as 0. i.e., c0=0. 

 The block diagram for binary to CSD converter is as follows: 

 

                                     FIG 10 Binary to CSD conv. Block Diagram 

 

3.2 Comparison of Binary multiplication Vs. CSD multiplication 

Let us consider an example-14 multiplied with 15.  

Multiplicand => 1110; Multiplier=> 1111. 

 

       2^7+2^6+2^4+2^1=d210                   (2^7+2^6+2^5)-(2^3+2^2+2^1)=d210 

Here when we observe binary multiplication the number of stages involved for 

multiplication are more when compared to that of the stages of CSD multiplications. It is 
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clearly observed that the number of stages are decreased as the number of 1’s of the 

multiplier are reduced and are converted into 0’s using the CSD algorithm. Later after 

performing the multiplication in binary and CSD respectively the result is converted into 

decimal format. And when observed the results both are of same value in decimal format. 

That’s the reason we are using CSD algorithm for efficient multiplication- as the number of 

stages or partial products terms are reduced the hardware requirement is also reduced 

correspondingly which leads to reduction in area utilization. 

3.3 CSD FLOW 

 

FIG 11 CSD Multiplication flow chart 

3.4 FPM Using CSD 

 

                                                          FIG 12 FPM Using CSD 
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CHAPTER 4 

OVERVIEW OF FPGA AND EDA SOFTWARE 

 

4.1 INTRODUCTION 

Developing a large FPGA –based system is an involved process that consists of many 

complex transformations and optimization algorithms. Software tools are needed to automate 

some of the tasks. 

We use basys 3 Board which is a complete, ready-to- use digital circuit development platform 

based on the latest Artix-7 Field Programmable Gate Array (FPGA) (XC7A35T- 1CPG236C) 

from Xilinx for synthesis and implementation, and use the Vivado Design Suite for 

simulation.  

 A Field Programmable Gate Array (FPGA) is a logic device that contains a two- 

dimensional add shift of generic logic cells and programmable switches. A logic cell can be 

programmed to perform a simple function, and a programmable   switch can be customized to 

provide interconnection among the logic cells.  

  A custom design can be implemented by specifying the function of each logic cell and 

selectively setting the connection of each programmable switch. Once the design and 

synthesis are completed, we can use a simple adapter cable to download the desired logic cell 

and switch configuration to the FPGA device and obtain the custom circuit. Since this process 

can be done “in the field” rather than “in fabrication facility (fab),” the device is known as 

field programmable. 

 

4.2 OVERVIEW OF DIGILENT BASYS 3 BOARD 

The Basys 3 board is a complete, ready-to-use digital circuit development platform based on 

the latest Artix-7 Field Programmable Gate Array (FPGA) from Xilinx®. With its high-

capacity FPGA (Xilinx part number XC7A35T- 1CPG236C), low overall cost, and collection 

of USB, VGA, and other ports, the Basys 3 can host designs ranging from introductory 

combinational circuits to complex sequential circuits like embedded processors and 

controllers. It includes enough switches, LEDs, and other I/O devices to allow a large number 

of designs to be completed without the need for any additional hardware, and enough 

uncommitted FPGA I/O pins to allow designs to be expanded using Digilent Pmods or other 

custom boards and circuits. 
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4.2.1 Features Of Basys 3 

• 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-

flops) 

• 1,800 Kbits of fast block RAM 

• Five clock management tiles, each with a phase-locked  loop(PLL) 

• 90 DSP slices 

• Internal clock speeds exceeding 450MHz 

• On-chip analog-to-digital converter(XADC) 

• 16 user switches 

• 16 user LEDs 

• 5 user push buttons 

• 4-digit7-segmentdisplay 

• Three Pmod ports 

• Pmod for XADC signals 

• 12-bit VGA output 

• USB-UART Bridge 

• Serial Flash 

• Digilent USB-JTAG port for FPGA programming and communication 

• USB HID Host for mice, keyboards and memory sticks 

 

Figure13 Basys3FPGAboardwithcallouts. 
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  Table 6 Basys 3 FPGA Component Description 
Callout Component Description Callout Component Description 

1 Power good LED 9 FPGA configuration reset button 

2 Pmod port(s) 10 Programming mode jumper 

3 Analog signal Pmod port (XADC) 11 USB host connector 

4 Four digit 7-segment display 12 VGA connector 

5 Slide switches (16) 13 Shared UART/ JTAG USB port 

6 LEDs (16) 14 External power connector 

7 Pushbuttons (5) 15 Power Switch 

8 FPGA programming done LED 16 Power Select Jumper 

 

4.2.2 Power Supplies 

The Basys 3 board can receive power from the Digilent USB-JTAG port (J4) or from a 5V 

external power supply.   Jumper JP3 (near the power switch) determines which source is used. 

All Basys 3 power supplies can be turned on and off by a single logic-level power switch 

(SW16). A power-good LED (LD20), driven by the "power good" output of the LTC3633 

supply, indicates that the supplies are turned on and operating normally. An overview of the 

Basys 3 power circuit is shown in Fig. 2. 

 

Figure 14 Basys 3 power circuit. 

 

The USB port can deliver enough power for the vast majority of designs. A few demanding 

applications, including any that drive multiple peripheral boards, might require more power 
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than the USB port can provide. Also, some applications may need to run without being 

connected to a PC's USB port. In these instances an external power supply or battery pack can 

be  used. 

An external power supply can be used by plugging into the external power header (J6) and 

setting jumper JP2 to "EXT". The supply must deliver 4.5VDC to 5.5VDC and at least 1A of 

current (i.e., at least 5W of power). Many suitable supplies can be purchased through Digi-

Key or other catalog vendors. 

An external battery pack can be used by connecting the battery's positive terminal to the 

"EXT" pin of J6 and the negative terminal to the "GND" pin of J6. The power provided to 

USB devices that are connected to Host connector J2 is not regulated. Therefore, it is necessary 

to limit the maximum voltage of an external battery pack to 5.5V DC. The minimum voltage 

of the battery pack depends on the application; if the USB Host function (J2) is used, at least 

4.6V needs to be provided. In other cases, the minimum voltage is 3.6V. 

Voltage regulator circuits from Linear Technology create the required 3.3V, 1.8V, and 1.0V 

supplies from the main power input. Table 2 provides additional information (typical currents 

depend strongly on FPGA configuration and the values provided are typical of medium 

size/speed designs). 

    Table 7 Basys 3 power supplies. 

Supply Circuits Device Current (max/typical) 

3.3V FPGA I/O, USB ports, 

Clocks, 

Flash, PMODs 

IC10: LTC3633 2A/0.1 to 1.5A 

1.0V FPGA Core IC10: LTC3633 2A/ 0.2 to 1.3A 

1.8V FPGA Auxiliary and 

Ram 

IC11: LTC3621 300mA/ 0.05 to 0.15A 

 

4.2.3 FPGA Configuration 

After power-on, the Artix-7 FPGA must be configured (or programmed) before it can perform 

any functions. You can configure the FPGA in one of three ways: 

A PC can use the Digilent USB-JTAG circuitry (portJ4, labeled "PROG") to program the 

FPGA any time the power is on. 

A file stored in the nonvolatile serial (SPI) flash device can be transferred to the FPGA using 

the SPI port. 

A programming file can be transferred from a USB memory stick attached to the USB HID 

port. 
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Figure 3 shows the different options available for configuring the FPGA. An on-board "mode" 

jumper (JP1) selects between the programming modes. 

 

Figure 15 Basys 3 configuration options 

The FPGA configuration data is stored in files called bitstreams that have the .bit file 

extension. The Vivado software from Xilinx can create bitstreams from VHDL, Verilog®, or 

schematic-based source files. 

Bitstreams are stored in SRAM-based memory cells within the FPGA. This data defines the 

FPGA's logic functions and circuit connections, and it remains valid until it is erased by 

removing board power, by pressing the reset button attached to the PROG input, or by writing 

a new configuration file using the JTAG port. 

An Artix-7 35T bitstream is typically 17,536,096 bits and can take a long time to transfer. The 

time it takes to program the Basys 3 can be decreased by compressing the bitstream before 

programming, and then allowing the FPGA to decompress the bitstream itself during 

configuration. Depending on design complexity, compression ratios of 10x can be achieved. 

Bitstream compression can be enabled within the Xilinx Tools (Vivado) to occur during 

generation. For instructions on how to do this, consult the Xilinx documentation for the toolset 

being used. 

After being successfully programmed, the FPGA will cause the "DONE" LED to illuminate. 

Pressing the "PROG" button at any time will reset the configuration memory in the FPGA. 

After being reset, the FPGA will immediately attempt to reprogram itself from whatever 

method has been selected by the programming mode jumper. 

The following sections provide greater detail about programming the Basys 3 using the 

different methods available. 
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4.2.3.1 JTAG Programming 

The Xilinx Tools typically communicate with FPGAs using the Test Access Port and 

Boundary-Scan Architecture, commonly referred to as JTAG. During JTAG programming, a 

.bit file is transferred from the PC to the FPGA using the onboard Digilent USB-JTAG 

circuitry (port J4) or an external JTAG programmer, such as the Digilent JTAG-HS2 attached 

to port J5 (located below port JA). You can perform JTAG programming any time after the 

Basys 3 has been powered on regardless of what the mode jumper (JP1) is set to. If the FPGA 

is already configured, then the existing configuration is overwritten with the bitstream being 

transmitted over JTAG. Setting the mode jumper to the JTAG setting (seen in Fig. 3) is useful 

to prevent the FPGA from being configured from any other bitstream source until a JTAG 

programming occurs. 

Programming the Basys 3 with an uncompressed bitstream using the on-board USB_JTAG 

circuitry usually takes around five seconds. JTAG programming can be done using the 

hardware server in Vivado. The demonstration project available at digilentinc.com provides 

an in-depth tutorial on how to program your board. 

4.2.3.2 JTA Programming 

When programming a nonvolatile flash device, a bitstream file is transferred to the flash in a 

two-step process. First, the FPGA is programmed with a circuit that can program flash devices, 

and then data is transferred to the flash device via the FPGA circuit (this complexity is hidden 

from the user by the Xilinx Tools). After the flash device has been programmed, it can 

automatically configure the FPGA at a subsequent power-on or reset event as determined by 

the mode jumper setting (see Fig. 3). Programming files stored in the flash device will remain 

until they are overwritten, regardless of power-cycle events. 

Programming the flash can take as long as one or two minutes, which is mostly due to the 

lengthy erase process inherent to the memory technology. Once written, however, FPGA 

configuration can be very fast – less than a second. Bitstream compression, SPI bus width, 

and configuration rate are factors controlled by the Xilinx Tools that can affect configuration 

speed. 

Quad-SPI programming can be performed using Vivado. 

4.2.3.3 USB Host Programming 

You can program the FPGA from a pen drive attached to the USB-HID port (J2) by doing the 

following: 

1. Format the storage device (Pen drive) with a FAT32 file system. 
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2. Place a single bit configuration file in the root directory of the storage device. 

3. Attach the storage device to the Basys 3. 

4. Set the JP1 Programming Mode jumper on the Basys 3 to "USB". 

5. Push the PROG button or power-cycle the Basys 3. 

The FPGA will automatically be configured with the .bit file on the selected storage device. 

Any .bit files that are not built for the proper Artix-7 device will be rejected by the FPGA. 

The Auxiliary Function Status, or "BUSY" LED (LD16), gives visual feedback on the state 

of the configuration process when the FPGA is not yet programmed: 

• When steadily lit, the auxiliary microcontroller is either booting up or currently reading 

the configuration medium (pen drive) and downloading a bitstream to the FPGA. 

• A slow pulse means the microcontroller is waiting for a configuration medium to be 

plugged in. 

• In case of an error during configuration, the LED will blink rapidly 

When the FPGA has been successfully configured, the behavior of the LED is application-

specific. For example, if a USB keyboard is plugged in, a rapid blink will signal the receipt of 

an HID input report from the keyboard. 

4.2.4 Memory 

The Basys 3 board contains a 32Mbit non-volatile serial Flash device, which is attached to the 

Artix-7 FPGA using a dedicated quad-mode (x4) SPI bus. The connections and pin 

assignments between the FPGA and the serial flash device are shown in Fig. 4. 

FPGA configuration files can be written to the Quad SPI Flash (Spansion part number 

S25FL032), and mode settings are available to cause the FPGA to automatically read a 

configuration from this device at power on. An Artix-7 35T configuration file requires just 

over two Mbytes of memory, leaving approximately 48% of the flash device available for user 

data. 

NOTE: Refer to the manufacturer's data sheets and the reference designs posted on Digilent's 

website for more information about the memory devices. 

                                                  Figure 16 Basys 3 external memory 
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4.2.5 Oscillators/Clocks 

The Basys 3 board includes a single 100 MHz oscillator connected to pin W5 (W5 is a MRCC 

input on bank 34). The input clock can drive MMCMs or PLLs to generate clocks of various 

frequencies and with known phase relationships that may be needed throughout a design. 

Some rules restrict which MMCMs and PLLs may be driven by the 100 MHz input clock. For 

a full description of these rules and of the capabilities of the Artix-7 clocking resources, refer 

to the "7 Series FPGAs Clocking Resources User Guide" available from Xilinx. 

Xilinx offers the LogiCORE™ Clocking Wizard IP to help users generate the different clocks 

required for a specific design. This wizard properly instantiates the needed MMCMs and PLLs 

based on the desired frequencies and phase relationships specified by the user. The wizard will 

then output an easy to use wrapper component around these clocking resources that can be 

inserted into the user's design. The Clocking Wizard can be accessed from within IP Catalog, 

which can be found under the Project Manager section of the Flow Navigator in Vivado. 

 

4.2.6 USB-UART Bridge(Serial Port) 

The Basys 3 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J4) that 

allows you to use PC applications to communicate with the board using standard Windows 

COM port commands. Free USB-COM port drivers, available from www.ftdichip.com under 

the "Virtual Com Port" or VCP heading, convert USB packets to UART/serial port data. Serial 

port data is exchanged with the FPGA using a two-wire serial port (TXD/RXD). After the 

drivers are installed, I/O commands can be used from the PC directed to the COM port to 

produce serial data traffic on the B18 and A18 FPGA pins. 

 

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the 

transmit LED (LD18) and the receive LED (LD17). Signal names that imply direction are 

from the point-of-view of the DTE (Data Terminal Equipment), in this case the PC. 

 

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the 

USB-UART and USB-JTAG functions behave entirely independent of one another. 

Programmers interested in using the UART functionality of the FT2232 within their design do 

not need to worry about the JTAG circuitry interfering with the UART data transfers, and 

vice-versa. The combination of these two features into a single device allows the Basys 3 to 

be programmed, communicated with via UART, and powered from a computer attached with 

http://www.ftdichip.com/
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a single Micro USB cable. The connections between the FT2232HQ and the Artix-7 are shown 

in Fig. 17.  

 

Figure 17 basys3 FT2232HQ Connection 

 

4.2.7 USB HID Host 

The Auxiliary Function microcontroller (Microchip PIC24FJ128) provides the Basys 3 with 

USB HID host capability. After power-up, the microcontroller is in configuration mode, either 

downloading a bitstream to the FPGA or waiting for it to be programmed from other sources. 

Once the FPGA is programmed, the microcontroller switches to application mode, which in 

this case is USB HID Host mode. Firmware in the microcontroller can drive a mouse or a 

keyboard attached to the type A USB connector at J2 labeled "USB." Hub support is not 

currently available, so only a single mouse or a single keyboard can be used. The PIC24 drives 

several signals into the FPGA – two are used to implement a standard PS/2 interface for 

communication with a mouse or keyboard, and the others are connected to the FPGA's two-

wire serial programming port, so the FPGA can be programmed from a file stored on a USB 

pen drive. 

 

Figure 18 Basys 3 PIC24 connections. 
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4.2.7.1 HID CONTROLLER 

The Auxiliary Function microcontroller hides the USB HID protocol from the FPGA and 

emulates an old-style PS/2 bus. The microcontroller behaves just like a PS/2 keyboard or 

mouse would. This means new designs can re-use existing PS/2 IP cores. Mice and keyboards 

that use the PS/2 protocol use a two-wire serial bus (clock and data) to communicate with a 

host. On the Basys 3, the microcontroller emulates a PS/2 device while the FPGA plays the 

role of the host. Both the mouse and the keyboard use 11-bit words that include a start bit, 

data byte (LSB first), odd parity, and stop bit, but the data packets are organized differently, 

and the keyboard interface allows bi- directional data transfers (so the host device can 

illuminate state LEDs on the keyboard). Bus timings are shown in Fig. 8. 

 

Figure 19 PS/2 device-to host timing diagram. 

The clock and data signals are only driven when data transfers occur; otherwise they are held 

in the idle state at logic '1.' This requires that when the PS/2 signals are used in a design, 

internal pull-ups must be enabled in the FPGA on the data and clock pins. The clock signal is 

normally driven by the device, but may be held low by the host in special cases. The timings 

define signal requirements for mouse-to-host communications and bi-directional keyboard 

communications. A PS/2 interface circuit can be implemented in the FPGA to create a 

keyboard or mouse interface. 

When a keyboard or mouse is connected to the Basys 3, a "self-test passed" command (0xAA) 

is sent to the host. After this, commands may be issued to the device. Since both the keyboard 

and the mouse use the same PS/2 port, one can tell the type of device connected using the 

device ID. This ID can be read by issuing a Read ID command (0xF2). Also, a mouse sends 
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its ID (0x00) right after the "self-test passed" command, which distinguishes it from a 

keyboard. 

4.2.7.2  Keyboard 

The keyboard uses open-collector drivers so the keyboard, or an attached host device, can 

drive the two-wire bus (if the host device will not send data to the keyboard, then the host can 

use input-only ports). 

PS/2-style keyboards use scan codes to communicate key press data. Each key is assigned a 

code that is sent whenever the key is pressed. If the key is held down, the scan code will be 

sent repeatedly about once every 100ms. When a key is released, an F0 key-up code is sent, 

followed by the scan code of the released key. If a key can be shifted to produce a new 

character (like a capital letter), then a shift character is sent in addition to the scan code and the 

host must determine which ASCII character to use. Some keys, called extended keys, send an 

E0 ahead of the scan code (and they may send more than one scan code). When an extended 

key is released, an E0 F0 key-up code is sent, followed by the scan code. Scan codes for most 

keys are shown in Fig. 9. 

 

 

Figure 20 Keyboard scan codes. 

 

A host device can also send data to the keyboard. Table 3 shows a list of some common 

commands a host might send.  

 

The keyboard can send data to the host only when both the data and clock lines are high (or 

idle). Because the host is the bus master, the keyboard must check to see whether the host is 

sending data before driving the bus. To facilitate this, the clock line is used as a "clear to send" 
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signal. If the host drives the clock line low, the keyboard must not send any data until the 

clock is released. The keyboard sends data to the host in 11-bit words that contain a '0' start 

bit, followed by 8-bits of scan code (LSB first), followed by an odd parity bit, and terminated 

with a '1' stop bit. The keyboard generates 11 clock transitions (at 20 to 30 KHz) when the data 

is sent, and data is valid on the falling edge of the clock. 

   Table 8 Keyboard commands. 

Command Action 

 

ED 

Set Num Lock, Caps Lock, and Scroll Lock LEDs. Keyboard returns FA after 
receiving ED, then 

host sends a byte to set LED status: bit 0 sets Scroll Lock, bit 1 sets Num 

Lock, and bit 2 sets Caps lock. Bits 3 to 7 are ignored. 

EE Echo (test). Keyboard returns EE after receiving EE. 

F3 
Set scan code repeat rate. Keyboard returns F3 on receiving FA, then host 
sends second byte 
to set the repeat rate. 

FE Resend. FE directs keyboard to re-send most recent scan code. 

FF Reset. Resets the keyboard. 

 

4.2.7.3 MOUSE 

Once entered in stream mode and data reporting has been enabled, the mouse outputs a clock 

and data signal when it is moved. Otherwise, these signals remain at logic '1.' Each time the 

mouse is moved, three 11-bit words are sent from the mouse to the host device, as shown in 

Fig. 10. Each of the 11-bit words contains a '0' start bit, followed by 8 bits of data (LSB first), 

followed by an odd parity bit, and terminated with a '1' stop bit. Thus, each data transmission 

contains 33 bits, where bits 0, 11, and 22 are '0' start bits, and bits 11, 21, and 33 are '1' stop 

bits. The three 8-bit data fields contain movement data as shown in the Fig. 10. Data is valid 

at the falling edge of the clock, and the clock period is 20 to 30 KHz. 

The mouse assumes a relative coordinate system wherein moving the mouse to the right 

generates a positive number in the X field, and moving to the left generates a negative number. 

Likewise, moving the mouse up generates a positive number in the Y field, and moving down 

represents a negative number (the XS and YS bits in the status byte are the sign bits – a '1' 

indicates a negative number). The magnitude of the X and Y numbers represent the rate of 

mouse movement; the larger the number, the faster the mouse is moving (the XV and YV bits 

in the status byte are movement overflow indicators – a '1' means overflow has occurred). If 

the mouse moves continuously, the 33-bit transmissions are repeated every 50ms or so. The L 

and R fields in the status byte indicate Left and Right button presses (a '1' indicates that the 
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button is being pressed). 

 

Figure 21 Mouse data format 

The microcontroller also supports Microsoft® IntelliMouse®-type extensions for reporting 

back a third axis representing the mouse wheel, as shown in Table 4. 

  Table 9 Microsoft Intellimouse-type extensions, commands, and actions. 

Command Action 

EA 
Set stream mode. The mouse responds with "acknowledge" (0xFA) then resets 
its movement 
counters and enters stream mode. 

 

F4 

Enable data reporting. The mouse responds with "acknowledge" (0xFA) then 
enables data 
reporting and resets its movement counters. This command only affects 

behavior in stream mode. Once issued, mouse movement will automatically 

generate a data packet. 

F5 
Disable data reporting. The mouse responds with "acknowledge" (0xFA) then 
disables data 
reporting and resets its movement counters. 

 

F3 

Set mouse sample rate. The mouse responds with "acknowledge" (0xFA) then 

reads one more byte from the host. This byte is then saved as the new sample 

rate, and a new "acknowledge" 
packet is issued. 

FE Resend. FE directs mouse to re-send last packet. 

FF Reset. The mouse responds with "acknowledge" (0xFA) then enters reset mode. 

 

4.2.8 VGA PORT 

NOTE: A helpful way to understand the way that VGA signals are transmitted is to understand 

the method of which CRT (Cathode Ray Tubes) function for displaying images. Although the 

technology may seem outdated, it is from this legacy that many of the signal names and 

timings have originated. 

 

The Basys 3 board uses 14 FPGA signals to create a VGA port with 4-bits per colour and the 

two standard sync signals (HS – Horizontal Sync, and VS – Vertical Sync). The colour signals 

use resistor-divider circuits that work in conjunction with the 75-ohm termination resistance 
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of the VGA display to create 16 signal levels each on the red, green, and blue VGA signals. 

This circuit, shown in Fig. 11, produces video colour signals that proceed in equal increments 

between 0V (fully off) and 0.7V (fully on). Using this circuit, 4096 different colours can be 

displayed, one for each unique 12-bit pattern. A video controller circuit must be created in the 

FPGA to drive the sync and colour signals with the correct timing in order to produce a 

working display system. 

                                    

                                       FIG 22 VGA Port Pin Description. 

4.2.8.1 VGA SYSTEM TIMING 

VGA signal timings are specified, published, copyrighted, and sold by the VESA® 

organization (www.vesa.org). The following VGA system timing information is provided as 

an example of how a VGA monitor might be driven in 640 by 480 mode. 

NOTE: For more precise information, or for information on other VGA frequencies, refer to 

documentation available at the VESA website. 

CRT-based VGA displays use amplitude-modulated moving electron beams (or cathode rays) 

to display information on a phosphor-coated screen. LCD displays use an array of switches 

that can impose a voltage across a small amount of liquid crystal, thereby changing light 

http://www.vesa.org/
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permittivity through the crystal on a pixel-by-pixel basis. Although the following description 

is limited to CRT displays, LCD displays have evolved to use the same signal timings as CRT 

displays (so the "signals" discussion below pertains to both CRTs and LCDs). Color CRT 

displays use three electron beams (one for red, one for blue, and one for green) to energize the 

phosphor that coats the inner side of the display end of a cathode ray tube (see Fig. 12). 

                

Figure 23 Colour CRT display. 

Electron beams emanate from "electron guns" which are finely-pointed heated cathodes placed 

in close proximity to a positively charged annular plate called a "grid." The electrostatic force 

imposed by the grid pulls rays of energized electrons from the cathodes, and those rays are 

fed by the current that flows into the cathodes. These particle rays are initially accelerated 

towards the grid, but they soon fall under the influence of the much larger electrostatic force 

that results from the entire phosphor-coated display surface of the CRT being charged to 20kV 

(or more). The rays are focused to a fine beam as they pass through the center of the grids, 

and then they accelerate to impact on the phosphor-coated display surface. The phosphor 

surface glows brightly at the impact point, and it continues to glow for several hundred 

microseconds after the beam is removed. The larger the current fed into the cathode, the 

brighter the phosphor will glow. 

Between the grid and the display surface, the beam passes through the neck of the CRT where 

two coils of wire produce orthogonal electromagnetic fields. Because cathode rays are 

composed of charged particles (electrons), they can be deflected by these magnetic fields. 

Current waveforms are passed through the coils to produce magnetic fields that interact with 

the cathode rays and cause them to transverse the display surface in a "raster" pattern, 

horizontally from left to right and vertically from top to bottom, as shown in Fig. 13. As the 
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cathode ray moves over the surface of the display, the current sent to the electron guns can be 

increased or decreased to change the brightness of the display at the cathode ray impact point. 

Information is only displayed when the beam is moving in the "forward" direction (left to right 

and top to bottom), and not during the time the beam is reset back to the left or top edge of the 

display. Much of the potential display time is therefore lost in "blanking" periods when the 

beam is reset and stabilized to begin a new horizontal or vertical display pass. The size of the 

beams, the frequency at which the beam can be traced across the display, and the frequency at 

which the electron beam can be modulated determine the display resolution. 

Modern VGA displays can accommodate different resolutions, and a VGA controller circuit 

dictates the resolution by producing timing signals to control the raster patterns. The controller 

must produce synchronizing pulses at 3.3V (or 5V) to set the frequency at which current flows 

through the deflection coils, and it must ensure that video data is applied to the electron guns 

at the correct time. Raster video displays define a number of "rows" that corresponds to the 

number of horizontal passes the cathode makes over the display area, and a number of 

"columns" that corresponds to an area on each row that is assigned to one "picture element" 

or pixel. Typical displays use from 240 to 1200 rows and from 320 to 1600 columns. The 

overall size of a display and the number of rows and columns determines the size of each pixel. 

                            

Figure 24 VGA horizontal synchronization. 
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Video data typically comes from a video refresh memory; with one or more bytes assigned to 

each pixel location (the Basys 3 uses 12-bits per pixel). The controller must index into video 

memory as the beams move across the display, and retrieve and apply video data to the display 

at precisely the time the electron beam is moving across a given pixel. 

 

A VGA controller circuit must generate the HS and VS timings signals and coordinate the 

delivery of video data based on the pixel clock. The pixel clock defines the time available to 

display one pixel of information. The VS signal defines the "refresh" frequency of the display, 

or the frequency at which all information on the display is redrawn. The minimum refresh 

frequency is a function of the display's phosphor and electron beam intensity, with practical 

refresh frequencies falling in the 50Hz to 120Hz range. The number of lines to be displayed 

at a given refresh frequency defines the horizontal "retrace" frequency. For a 640-pixel by 

480-row display using a 25 MHz pixel clock and 60 +/-1Hz refresh, the signal timings shown 

in Fig. 14 can be derived. Timings for sync pulse width and front and back porch intervals 

(porch intervals are the pre- and post-sync pulse times during which information cannot be 

displayed) are based on observations taken from actual VGA displays. 

                     

     Figure 25 Signal timings for a 640-pixel by 480 row display using a 25 MHz pixel clock 

and 60 Hz vertical refresh. 

A VGA controller circuit, such as the one diagramed in Fig. 15, decodes the output of a 

horizontal-sync counter driven by the pixel clock to generate HS signal timings. You can use 

this counter to locate any pixel location on a given row. Likewise, the output of a vertical-

sync counter that increments with each HS pulse can be used to generate VS signal timings, 
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and you can use this counter to locate any given row. These two continually running counters 

can be used to form an address into video RAM. No time relationship between the onset of 

the HS pulse and the onset of the VS pulse is specified, so you can arrange the counters to 

easily form video RAM addresses, or to minimize decoding logic for sync pulse generation. 

 

 

 

 

 

 

 

 

Figure 26 VGA display controller block diagram. 

4.2.9 BASIC I/O 

The Basys 3 board includes sixteen slide switches, five push buttons, sixteen individual LEDs, 

and a four-digit seven- segment display, as shown in Fig. 16. The pushbuttons and slide 

switches are connected to the FPGA via series resistors to prevent damage from inadvertent 

short circuits (a short circuit could occur if an FPGA pin assigned to a pushbutton or slide 

switch was inadvertently defined as an output). The five pushbuttons, arranged in a plus-sign 

configuration, are "momentary" switches that normally generate a low output when they are 

at rest, and a high output only when they are pressed. Slide switches generate constant high 

or low inputs depending on their position. 

                 
             Figure 27 General purpose I/O devices on the Basys 3. 
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The sixteen individual high-efficiency LEDs are anode-connected to the FPGA via 330 ohm 

resistors, so they will turn on when a logic high voltage is applied to their respective I/O pin. 

Additional LEDs, which are not user- accessible, indicate power-on, FPGA programming 

status, and USB port status. 

4.2.9.1 Seven-Segment Display 
The Basys 3 board contains one four-digit common anode seven-segment LED display. Each 

of the four digits is composed of seven segments arranged in a "figure 8" pattern, with an LED 

embedded in each segment. Segment LEDs can be individually illuminated, so any one of 128 

patterns can be displayed on a digit by illuminating certain LED segments and leaving the 

others dark, as shown in Fig. 17. Of these 128 possible patterns, the ten corresponding to the 

decimal digits are the most useful. 

                                
Figure 28 An un-illuminated seven-segment display and nine illumination patterns 

corresponding to decimal digits. 

The anodes of the seven LEDs forming each digit are tied together into one "common anode" 

circuit node, but the LED cathodes remain separate, as shown in Fig. 18. The common anode 

signals are available as four "digit enable" input signals to the 4-digit display. The cathodes of 

similar segments on all four displays are connected into seven circuit nodes labeled CA 

through CG (for example, the four "D" cathodes from the four digits are grouped together into 

a single circuit node called "CD"). These seven cathode signals are available as inputs to the 

4-digit display. 

This signal connection scheme creates a multiplexed display, where the cathode signals are 

common to all digits but they can only illuminate the segments of the digit whose 

corresponding anode signal is asserted. 

To illuminate a segment, the anode should be driven high while the cathode is driven low. 

However, since the Basys 3 uses transistors to drive enough current into the common anode 

point, the anode enables are inverted. Therefore, both the AN0..3 and the CA..G/DP signals 

are driven low when active. 
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Figure 29 Common anode circuit node. 

A scanning display controller circuit can be used to show a four-digit number on this display. 

This circuit drives the anode signals and corresponding cathode patterns of each digit in a 

repeating, continuous succession at an update rate that is faster than the human eye can detect. 

Each digit is illuminated just one-fourth of the time, but because the eye cannot perceive the 

darkening of a digit before it is illuminated again, the digit appears continuously illuminated. 

If the update, or "refresh", rate is slowed to around 45Hz, a flicker can be noticed in the 

display. 

For each of the four digits to appear bright and continuously illuminated, all four digits should 

be driven once every 1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, 

in a 62.5Hz refresh scheme, the entire display would be refreshed once every 16ms, and each 

digit would be illuminated for 1/4 of the refresh cycle, or 4ms. The controller must drive the 

cathodes 

low with the correct pattern when the corresponding anode signal is driven high. To illustrate 

the process, if AN0 is asserted while CB and CC are asserted, then a "1" will be displayed in 

digit position 1. Then, if AN1 is asserted while CA, CB, and CC are asserted, a "7" will be 

displayed in digit position 2. If AN0, CB, and CC are driven for 4ms, and then AN1, CA, CB, 

and CC are driven for 4ms in an endless succession, the display will show "71" in the first two 

digits. An example timing diagram for a four-digit controller is shown in Fig. 19. 

                                   

 

 

 

 

 

 

 

 

 Figure 30 Four-digit scanning display controller timing diagram. 

Refresh period = 1ms to 16ms 

 
Digit period = Refresh / 4 

Digit 0 Digit 1 Digit 2 Digit 3 
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4.2.10 PMOD PORTS 

The Pmod ports are arranged in a 2x6 right-angle, and are 100-mil female connectors that mate 

with standard 2x6 pin headers. Each 12-pin Pmod port provides two 3.3V VCC signals (pins 

6 and 12), two Ground signals (pins 5 and 11), and eight logic signals, as shown in Fig. 20. 

The VCC and Ground pins can deliver up to 1A of current. Pmod data signals are not matched 

pairs, and they are routed using best-available tracks without impedance control or delay 

matching. Pin assignments for the Pmod I/O connected to the FPGA are shown in Table 6. 

                              

          Figure 31 Pmod ports; front view as loaded on PCB. 

                              Table 10 Basys 3 Pmod pin assignment 

Pmod JA Pmod JB Pmod JC Pmod XDAC 

JA1: J1 JB1: A14 JC1: K17 JXADC1: J3 

JA2: L2 JB2: A16 JC2: M18 JXADC2: L3 

JA3: J2 JB3: B15 JC3: N17 JXADC3: M2 

JA4: G2 JB4: B16 JC4: P18 JXADC4: N2 

JA7: H1 JB7: A15 JC7: L17 JXADC7: K3 

JA8: K2 JB8: A17 JC8: M19 JXADC8: M3 

JA9: H2 JB9: C15 JC9: P17 JXADC9: M1 

JA10: G3 JB10: C16 JC10: R18 JXADC10: N1 

 

Digilent produces a large collection of Pmod accessory boards that can attach to the Pmod 

expansion ports to add ready-made functions like A/Ds, D/As, motor drivers, sensors, and 

other functions. See www.digilentinc.com for more information. 

 

 

 

http://www.digilentinc.com/


42 

 

 

 

4.2.10.1 DUAL ANALOG/DIGITAL PMOD 
The on-board Pmod expansion port, labeled "JXADC", is wired to the auxiliary analog input 

pins of the FPGA. Depending on the configuration, this connector can be used to input 

differential analog signals to the analog-to- digital converter inside the Artix-7 (XADC). Any 

or all pairs in the connector can be configured either as analog input or digital input-output. 

The Dual Analog/Digital Pmod on the Basys 3 differs from the rest in the routing of its traces. 

The eight data signals are grouped into four pairs, with the pairs routed closely coupled for 

better analog noise immunity. Furthermore, each pair has a partially loaded anti-alias filter 

laid out on the PCB. The filter does not have capacitors C33-C36. In designs where such filters 

are desired, the capacitors can be manually loaded by the user. 

NOTE: The coupled routing and the anti-alias filters might limit the data speeds when used 

for digital signals. The XADC core within the Artix-7 is a dual channel 12-bit analog-to-digital 

converter capable of operating at 1 

MSPS. Either channel can be driven by any of the auxiliary analog input pairs connected to 

the JXADC header. The XADC core is controlled and accessed from a user design via the 

Dynamic Reconfiguration Port (DRP). The DRP also provides access to voltage monitors that 

are present on each of the FPGA's power rails, and a temperature sensor that is internal to the 

FPGA. For more information on using the XADC core, refer to the Xilinx document titled "7 

Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-

to-Digital Converter." 
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4.2.11 BUILT IN SELF TEST 

A demonstration configuration is loaded into the SPI Flash device on the Basys 3 board during 

manufacturing. The source code and prebuilt bitstream for this design are available for 

download from the Digilent website. If the demo configuration is present in the SPI Flash 

device and the Basys 3 board is powered on in SPI mode, the demo project will allow basic 

hardware verification. Here is an overview of how this demo drives the different onboard 

components: 

• The user LEDs are illuminated when the corresponding user switch is placed in the 

on position. 

• The VGA port displays feedback from a USB Mouse. 

• Connecting a mouse to the USB-HID Mouse port will allow the pointer 

on the VGA display to be controlled. 

• On power-up, each digit of the seven-segment display will display a 

counter output from 0-9 that increments once a second. 

• Pressing BTNU, BTNL, BTNR, or BTND will cause a digit of the seven-segment 

display to go blank. 

• Pressing BTNC will reset the design. 

• On power-up, a welcome message is sent over the UART. Also, every time a button 

is pressed a message is sent. The UART can be connected to using a terminal 

program with 9600 Baud, 8 data bits, 1 stop bit, and no parity. 

All Basys 3 boards are 100% tested during the manufacturing process. If any device on the 

Basys 3 board fails test or is not responding properly, it is likely that damage occurred during 

transport or during use. Typical damage includes stressed solder joints and contaminants in 

switches and buttons resulting in intermittent failures. Stressed solder joints can be repaired 

by reheating and reflowing solder and contaminants can be cleaned with off-the-shelf 

electronics cleaning products. If a board fails test within the warranty period, it will be replaced 

at no cost. Contact Digilent for more details. 

4.3 DEVELEPMENT FLOW 

 
The simplified development flow of an FPGA-based system is shown below. The left portion 

of the flow is the refinement and programming process, in which a system is transformed from 

an abstract textual HDL description to a device cell- level configuration and then downloaded 

to the FPGA device. The right portion is the validation process, which checks whether the 
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system meets the functional specification and performance goals. The major steps in the flow 

are:  

                            

Fig 32 Development flow 

a) Design Entry: Design the system and derive the HDL file(s). We may need to add a 

separate constraint file to specify certain implementation constraints. 

b) RTL Simulation: Develop the test bench in HDL and perform RTL (Register Transfer 

Level) simulation. The RTL term reflects the fact that the HDL code is done at the register 

transfer level. 

 c)Synthesis: The synthesis process is generally known as logic synthesis, in which the 

software transforms the HDL constructs to generic level components, such as simple logic 

gates and FFs. 

d)Implementation:  The implementation process consists of three smaller processes: translate 

map, and place and route. The translate process merges multiple design files to a single netlist. 

The map process, which is generally known as technology mapping, maps the generic gates 

in the netlist to FPGA logic cells and IOBs. The place and route process, which is generally 

known as placement and routing, derives the physical layout inside the FPGA chip. It places 

the cells in physical locations and determines routes to connect various signals. In the Xilinx 

flow, static timing analysis, which determines various timing parameters, such as maximal 

propagation delay and maximal clock frequency, is performed at the end of the 

implementation process. 

 

 



45 

 

e) Generate and download the programming file: In this process, a configuration 

file is generated according to the final netlist. This file is downloaded to an FPGA device 

serially to configure the logic cells and switches. The physical circuit can be verified 

accordingly. 

The optional functional simulation can be performed after synthesis, and the optional timing 

simulation can be performed after implementation. Functional simulation uses a synthesized 

netlist to replace the RTL description and checks the correctness of the synthesis process. 

Timing simulation uses the final netlist, along with detailed timing data, to perform 

simulation. Because of the complexity of the netlist, functional and timing simulation may 

require a significant amount of time. If we follow good design and coding practices, the HDL 

code will be synthesized and implemented correctly. We only need to use RTL simulation to 

check the correctness of the HDL code and use static timing analysis to examine the relevant 

timing information. Both functional and timing simulations can be omitted from the 

development flow. 

4.4 Overview of VERILOG 

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model 

electronics systems. It is most commonly used in the design and verification of digital circuits 

at the regular – transfer level of abstraction. It is also used in the verification of analog circuits 

and mixed signal circuits HDLs allows the design to be simulated earlier in the design cycle 

in order to correct errors or experiment with different architectures. Designs described in HDL 

are technology independent, easy to design and debug, and are usually more readable than 

schematics, particularly for large circuits. 

Verilog can be used to describe designs at four levels of abstraction:  

Algorithmic level (much like a code if, case and loop statements). 

• Register transfer level (RTL uses registers connected by Boolean equations 

• Gate level (interconnected AND, NOR etc.). 

• Switch level (the switches are MOS transistors inside gates). 

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy, 

and communicate with other modules through a set of declared input, output and bidirectional 

ports. Internally, a module can contain any combination of the following: net/variable 

declarations (wire, reg, integer etc.), concurrent and sequential statement blocks and instances 

of other modules (sub – hierarchies). 
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4.4.1 Features of Verilog HDL 

Verilog HDL offers many useful features for hardware design 

• Verilog (verify logic) HDL is a general-purpose hardware description language 

that is easy to learn and use. It is similar in syntax to the C programming language. 

Designers with C programming experience will find it easy to learn Verilog HDL. 

• Verilog HDL allows different levels of abstraction to be mixed in the same model. 

Thus, a designer can define a hardware model in terms of switches, gates, RTL or 

behavioral code. Also, a designer needs to learn only one language for stimulus 

and hierarchical design. 

• Most popular logic synthesis tools support Verilog HDL. This makes it the 

language of choice for designers. 

• All fabrication vendors provide Verilog HDL libraries for post logic synthesis 

simulation. Thus, designing a chip in Verilog HDL allows the widest choice of 

vendors. 

• The programming language interface (PLI) is a powerful feature that allows the 

user to custom C code to interact with the internal data structures of Verilog. 

Designers can customize a Verilog HDL simulator to their need with the 

Programming language interface (PLI).  

4.4.2 Module Declaration 

A module is the principal design entity in Verilog. The first line of a module declaration 

specifies the name and port list (arguments). The next few lines specifies the I/O type (input, 

output or in out) and width of each port. The default port width is 1 bit. Then the port variables 

must be declared wire, reg. The default is wire. Typically, inputs are wire since their data is 

latched outside the module. Outputs are type reg if their signals were stored inside an always 

or initial block. 

Syntax 

Module model name (port list) 

Input[msb:lsb] input_port_list; 

Output[msb:lsb] output_port_list; 

inout[msb:lsb] inout_port_list; 

…………Statements……………. 

endmodule 
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Example 

module add sub (add, in1, in2, out); 

input add; 

input [7:0]in, in2; 

wire in1, in2; 

output [7:0]out; 

reg out; 

…………..Statements………… 

endmodule 

Verilog has four levels of modeling: 

1) The Switch level modeling. 

2) Gate level modeling. 

3) The Data flow level. 

     4)  The Behavioral level. 

1)Switch level modeling 

Switch level modeling forms the basic level of modeling digital circuits. The switches are 

available as a primitives in Verilog; they are central to design description at this level. Basic 

gates can be defined in terms of such switches. Switch-level modeling is a recently developed 

design and analysis methodology for MOS VLSI circuits. At the switch level, important 

features of MOS circuits can be directly modeled using a moderate number of discrete 

parameters, including switch states, resistance, capacitance, and bidirectional signals. Switch-

level models, provide more accurate behavioral and structural information than gate-level 

logical models, while avoiding the high computational cost associated with analog electrical 

models. It provides a level of abstraction between the logic and analog-transistor levels of 

abstraction, describing the interconnection of transmission gates which are abstractions of 

individual mos and cmos transistors. The design of MOS technology electronic circuits 

requires functional level simulations, as well as switch and circuit-level simulations. 

Functional simulations are necessary to understand the behavior independently of the 

implementation details. 
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Fig 33 CMOS inverter 

2) Gate Level Modeling 

Modelling done at this level is usually called gate level modelling as it involves gates and has 

a one to one relation between a hardware schematic and the Verilog code. Verilog supports a 

few basic logic gates known as primitives as they can be instantiated like modules since they 

are already predefined. In general, gate-level modelling is used for implementing 

lowest level modules in a design like, full-adder, multiplexers, etc. Verilog HDL 

has gate primitives for all basic gates. Gate primitives are predefined in Verilog, which are 

ready to use. Multiple input gate primitives include and, nand, or, nor, xor and xnor. Designer 

should know the gate level diagram of the design.  

Example 

module or_gate (out, a, b, c, d);  

input a, b, c, d;  

wire x, y;  

output out;  

or or1(x, a, b);  

or or2(y, c, d);  

or orfinal(out, x, y);  

endmodule 
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3)Data flow level modelling 

Dataflow modelling provides the means of describing combinational circuits by their function 

rather than by their gate structure. Dataflow modelling uses a number of operators that act on 

operands to produce the desired results. Verilog HDL provides about 30 operator types. 

Dataflow modelling uses continuous assignments and the keyword assign. A continuous 

assignment is a statement that assigns a value to a net. The datatype net is used in Verilog 

HDL to represent a physical connection between circuit elements. The value assigned to the 

net is specified by an expression that uses operands and operators. As an example, assuming 

that the variables were declared, a2-to-1 multiplexer with data inputs A and B, select input S, 

and output Y is described with continuous assignment. 

 assign Y= (A & S) | (B & S) 

Example 

The dataflow description of a 2-to-4-line decoder is shown in HDL below. The circuit is 

defined with four continuous assignment statements using Boolean expressions, one for each 

output. // Dataflow description of 2-to-4 line decoder with enable input (E) module decoder_df 

(A,B,E,D); 

 input A,B,E; 

 output [3,:0] D; 

 assign D[3] =~(~A & ~B & ~E); 

 assign D[2] =~(~A & B & ~E); 

 assign D[1] =~( A & ~B & ~E); 

 assign D[0] =~( A & B & ~E); 

endmodule 

4)Behavioural level modelling 

This is the highest level of abstraction provided by Verilog HDL. A module can be 

implemented in terms of the desired design algorithm without concern for the hardware 

implementation details. It specifies the circuit in terms of its expected behaviour. It specifies 

the circuit in terms of its expected behaviour. It is the closest to a natural language description 

of the circuit functionality, but also the most difficult to synthesize. 

All that a designer need is the algorithm of the design, which is the basic information for any 

design. This level simulates the behavioural level of the circuits and development rate in this 

level is highest. Although the development rate in this abstraction level is high there are some 
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drawbacks such as the delay modelling is not possible. In practice any circuit is first 

implemented in this level to understand the theoretical possibility of the circuit and then it is 

implemented in at a lower level to analyse the practical aspects. This level of Verilog has 

blocking and non-blocking assignment. Blocking assignment is sequential nature and using 

the combination of both assignments, complex sequential can be modelled with ease. 

The abstraction in this modelling is as simple as writing the logic in C language. This is a very 

powerful abstraction technique. All that a designer needs are the algorithm of the design, 

which is the basic information for any design. This level is very important because with the 

increasing complexity of digital design, it has become vitally important to make wise design 

decisions early in a project. Designers need to be able to evaluate the trade-offs of various 

architectures and algorithms before they decide on the optimum architecture and algorithm to 

implement in hardware. Only after the high-level architecture and algorithm are finalized, 

designers start focusing on building the digital circuit to implement the algorithm. Most of the 

behavioural modelling is done using two important constructs: initial and always. All the other 

behavioural statements appear only inside these two structured procedure constructs. 

Initial construct 

The statements which come under the initial construct constitute the initial block. The initial 

block is executed only once in the simulation, at time 0. If there are more than one initial 

blocks, than all the initial blocks are executed concurrently. The initial construct is used as 

follows: 

Initial 

Begin 

Reset = 1'b0; 

clk = 1'b1; 

end 

 

In the first initial block there is more than one statements hence they are written between begin 

and end. If there is only one statement then there is no need to put begin and end. 

Always construct 

The statements which come under the always construct constitute the always block. The 

always block starts at time 0, and keeps on executing all the simulation time. It works like an 

infinite loop. It is generally used to model a functionality that is continuously repeated. 
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always 

#5 clk = ~clk; 

initial 

clk = 1'b0; 

The above code generates a clock signal clk, with a time period of 10units. The initial blocks 

initiates the clk value to 0 at time 0. Then after  every 5 units of time it is toggled, hence we 

get a time period of 10units. This is the general way to generate a clock signal for use in 

testbenches. 

4.5 Overview of EDA (Electronic Design Automation) software 

Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis 

of HDL designs, superseding Xilinx ISE with additional features for system on a 

chip development and high-level synthesis. 

Setting up a Vivado project involves the following steps-  

Creating a New Project 

After launching Vivado, from the startup page click the “Create New Project” icon. 

Alternatively, you can select File  ➔ New project 

 

The New Project wizard will launch, click the “Next>” button to proceed. 

 

 

https://en.wikipedia.org/wiki/System_on_a_chip
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Enter a project name and select a project location. Make certain there are NO SPACES in 

either! It’s not a bad idea to only use letters, numbers, and underscores as well. If necessary 

simply create a new directory for your Xilinx Vivado projects in your root drive (e.g. 

C:/Vivado). You will likely always want to select the “create project sub-directory” check-

box as well. This keeps the things neatly organized with a directory for each project and helps 

avoid problems. Click the “Next>" button to proceed. 
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Select the “RTL Project” radial and select “Do not specify sources at this time” check -box. 

If you don’t select the check-box the wizard will take you through some additional steps to 

optionally add pre existing items such as VERILOG or Verilog source files, Vivado IP blocks, 

and. XDC constraint file for device pin amd timing configuration. For this first project you 

will add necessary items later. Click the “Next>” button to proceed 

 

 

Once you select the RTL project, Click on next button. 
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Click the “Finish” button and Vivado will proceed to create your project as specified. 

STEPS FOR DESIGN ENTRY/ IMPLEMENTATION: 

Working through the basic project flow 

 The Vivado project window contains a lot of information, and the information 

displayed can change depending on what part of the design currently have open as you work 

through the steps of your project. Keep this in mind as you work through this guide, because 

if you don’t see a specific sub window or sub window tab it’s possible you are’nt in the correct 

part of the design. 

          The “Flow Navigator” on the left side of the screen has all the major project phases 

organized from top to bottom in their natural chronological order. You begin in the “project 

manager” portion of the flow and the header at the top of the screen next to the flow navigator 

reflects this. This header and the corresponded highlighted section in the flow navigator will 

tell you which phase of the design you have opened. 

Project Manager 

Now click on “Add sources” under the project manager phase of the flow navigator. 
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Select the “Add or create design sources” radial and then click the “Next” button. 

 

Click the “Create file” button or click the Green “+”symbol in the upper left corner and select 

the “create file” option. 
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Make sure the options shown are selected in the “create source file” pop up, and for the sake 

of following enter “blinky” for the file name. Click the ok button when finished. 

Click the “finish button” and Vivado will then bring up the define module name 

 

 

You can use the “define module” window to automatically write some of the verilog code. 

Additional “I/O definitions” can be added by either clicking the green “+” symbol in the upper 

left or by simply clicking on the next empty line. 

Note that if you would rather write your own code from scratch you can just simply click the 
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“cancel” button and Vivado will create a completely blank Verilog source file inside your 

project. If you click the “OK” button without defining any “I/O definitions” Vivado will still 

write the basic Verilog code structure but the port definition will be empty and commented 

and you can write down the required remaining program. 

 

STEPS FOR CONSTRAINTS FILE CREATION 

Click on “Add sources” under the project manager phase of the Flow navigator. 

Select the “Add or create constraints” radial and then click the “Next>”button 

 

Then appears a popup asking for file name of the constraint file. Assign name to the constraint 

file and make sure that there are no spaces! and then click “OK”. 
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Write the bit file according to the requirement. The required memory locations are mapped to 

the program variables. 

 

The above written bit file is for half adder. The input variables a and b are mapped to input 

switch locations and the output variables s, c are mapped to output LED locations. In this way 

a bit file can be written according to our program requirements. We can also access locations 

other than switches and LEDs like LCD display, clock, buttons and Pmod Headers. The Pmod 

Headers are used for external interfacing. 

After writing bit file click on “Run Implementation”  

                                

After successfully completing the implementation, a pop up appears as follows 
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Click on “Generate Bitstream” and then “OK”. 

                               

This is an indication for completion of the generation of the bitstream which appears on top 

right corner. 

Now we have to connect to hardware device to target the device 

                                

Click on “Open Hardware Manager” and then “OK” 
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Click on “Open Target” to target a device. The Open New Hardware Target wizard will 

launch, click the “Next>” button to proceed. 

 

Select the “local server(target is on local machine)” from the drop down if it isn’t already, and 

then click the “Next>”button to proceed. Vivado will work for a moment to find any valid 

target devices connected to your local machine. 
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Select your specific Hardware device. Click the “Finish” button and Vivado will attempt to 

connect to your specified hardware. Now click “Program device” under the program and 

debug phase of the Flow Navigator and then your specific device from the menu that appears. 

After sometime the device will be programmed and the required outputs (LED’s) can be 

obtained by varying the inputs(switches) 
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CHAPTER 5 

RESULTS AND CONCLUSIONS 

 

5.1 Software: Xilinx Vivado 

• We have written code for design of CSD multiplier using verilog language. 

• Verilog is a Hardware Description Language which is used to design and describe 

digital circuits. 

• The Verilog HDL is an IEEE standard - number 1364.  Verilog is intended to be used 

for verification through simulation, for timing analysis, for test analysis and for logic 

synthesis. 

• Verilog is an easier language as its syntax is based on C language. Verilog supports a 

design at many levels of abstraction. The major three are? Behavioral level, Register-

transfer level and Gate level. We have simulated the code in Vivado software and 

analyzed the results. 

5.2 Simulation Results of CSD Multiplier 

a) RTL Diagram 

Register Transfer Level (RTL) is an abstraction for defining the digital portions of a design. 

The figure below represents the RTL diagram of 8-bit CSD multiplier designed. 

 

FIG 34 RTL diagram 
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b) Synthesized Schematic Diagram 

The Synthesized Schematic diagram for the above RTL diagram is as shown. It represents 

how the actual components are connected on the artix-7 Fpga board. 

 

FIG 35 Synthesized schematic diagram 

c)Area Utilization Report 

 

 FIG 36 LUT Table. 
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                                                    FIG 37 slice logic table 

                               

                                            FIG 38 Logic and memory table 
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d)Power Report 

 

                                                FIG 39 Power Report 

5.3 Simulation Output 

 

FIG 40 Simulation output results 

5.4 Hardware Implementation 

In this work, all proposed models are implemented on Basys3 Artix7 FPGA with the help of 

Xilinx Vivado. For implementation first we have to map original input and output ports with 

board I/Os by generating constraint file. Next, the program can be dumped to FPGA kit to 

verify the simulation results practically. 
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                                FIG 41 CSD multiplication timing summery. 

 

 

                                       FIG 42 General multiplication timing summery. 
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                                             FIG 43 Basys 3 FPGA Kit Output 
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CONCLUSION 

In digital signal processing multiplication is a key operation which determines the overall 

performance of the multiplier. Using Floating point representation in multiplication makes 

the operation accurate than using normal multiplication. In this project we have performed 

floating point multiplication using canonical signed digit algorithm and analysed the power 

and synthesis results. And we compared the results with normal binary multiplication and we 

observed that CSD multiplication taking less time compared to General multiplication. 
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