
i

FPGA Implementation of Canonical Signed Digit Algorithm

Based Floating Point Multiplication

 A Project report submitted in partial fulfillment of the Requirements for

 the award of the degree of

 BACHELOR OF TECHNOLOGY

 IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

 I.Hemanth (318126512139) Ch.Sravani(318126512129)

G.Bharath Chandra (318126512125) P.Yashwanth (318126512167)

 Under the guidance of

Dr. K.V.Gowreesrinivas

Assistant Professor

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)

 Sangivalasa, Bheemili mandal, Visakhapatnam dist. (A.P)

 2021-2022

iii

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr. K.V.Gowreesrinivas

Assistant Professor, Department of Electronics and Communication Engineering, ANITS,

for his/her guidance with unsurpassed knowledge and immense encouragement. We are

grateful to Dr. V. Rajyalakshmi, Head of the Department, Electronics and Communication

Engineering, for providing us with the required facilities for the completion of the project

work. We are very much thankful to the Principal and Management, ANITS, Sangivalasa,

for their encouragement and cooperation to carry out this work.

We express our thanks to all Teaching faculty of Department of ECE, whose suggestions

during reviews helped us in accomplishment of our project. We would like to thank all non-

teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last but not the least, we thank everyone for supporting us

directly or indirectly in completing this project successfully.

 PROJECT STUDENTS

 I. Hemanth(318126512139),

 Ch. Sravani(318126512129),

 G. Bharath Chandra (318126512125),

 P.Yashwanth (318126512167).

iv

CONTENTS

ABSTRACT vi

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Project Objective 2

1.2 Project Outline 2

CHAPTER 2 FLOATING-POINT MULTIPLICATION 3

2.1 Number System 3

2.1.1 Fixed Point 3

2.1.2 Floating Point 4

2.1.3 Single-precision floating-point numbers 4

2.1.4 Floating-point multiplication 5

2.2 Adders 6

2.2.1 Half Adder 6

2.2.2 Full Adder 7

2.2.3 Ripple Carry Adder 8

2.2.4 Carry Look Ahead Adder 8

2.2.5 Carry Save Adder 9

2.2.6 Carry Select Adder 10

2.2.7 SPST Adder 11

2.2.8 Comparison Between Different Types Of Adders 12

2.3 Multipliers 12

2.3.1 Partial Products 13

2.3.2 Types of multipliers 13

a. Shift and add multiplication 13

CHAPTER 3 Canonical Signed digit 15

3.1 Canonical Signed Digit Algorithm 15

3.2 Comparison between Binary multiplication Vs. CSD multiplication 19

3.3 CSD flow 20

v

3.4 FPM using CSD 20

CHAPTER 4 Overview of FPGA and EDA software 21

4.1 Introduction 21

4.2 Overview of Digilent basys 3 board 21

4.2.1 Features Of basys 3 22

4.2.2 Power supplies 23

4.2.3 FPGA Configuration 24

4.2.4 Memory 27

4.2.5 Oscillators/Clocks 28

4.2.6 USB-UART Bridge(Serial Port) 28

4.2.7 USB HID Host 29

4.2.8 VGA Port 33

4.2.9 BASIC I/O 38

4.2.10 PMOD Ports 41

 4.2.11 Built in self test 43

4.3 Development flow 43

4.4 Overview of Verilog 45

4.4.1 Features of Verilog HDL 46

4.4.2 Module Declaration 46

4.5 Overview of EDA software 51

CHAPTER 5 Results and conclusions 62

REFERENCES 69

vi

ABSTRACT

In today’s generation the requirement of very high-speed operations in processors is

increased. To speed up the process of computation, arithmetic operations such as addition

,subtraction and multiplication are used in various digital circuits. Floating point

multiplication is a critical operation in high power computing applications such as image

processing, digital signal processing.

The main multiplier characteristics are good accuracy, increase in speed, reduction in area

and less power consumption. As speed is always a constraint in the multiplication

operation, increase in speed can be achieved by reducing the number of stages in the

calculation process. Since the multiplier requires the longest delay among the basic

operational blocks in digital system, the critical path is determined more by the multiplier.

Furthermore, multiplier consumes much area and dissipates more power. Hence designing

multipliers which offer either of the following design targets – high speed, lower power

consumption, less area or even a combination of them is our prime concern.

The main aim of the project is to achieve the above design targets of a floating point

multiplier using Canonical Signed Digit (CSD) algorithm.

vii

LIST OF FIGURES

Fig No. Fig Name Page No.

 1 Half adder logic diagram 6

 2 Full adder logic diagram 7

 3 Ripple carry adder logic diagram 8

 4 Carry look ahead adder 9

 5 Carry save adder 10

 6 Carry select adder 10

 7 SPST adder 11

 8 Shift and add multiplier 13

 9 CSD converter circuit 18

 10 Binary to CSD conversion Block diagram 19

 11 CSD multiplication flow chart 20

 12 FPM using CSD 20

 13 Basys 3 FPGA Board with callouts 22

 14 Basys 3 power circuit 23

 15 Basys 3 configuration options 25

 16 Basys 3 external memory 27

 17 Basys 3 FT2232HQ connection 29

 18 Basys 3 PIC24 connections 29

 19 PS/2 device-to-host timing diagram 30

 20 Keyboard scan codes 31

 21 Mouse data format 33

 22 VGA port pin description 34

 23 colour CRT display 35

 24 VGA horizontal synchronization 36

 25 Signal timings for a 640-pixel by 480 row display 37

 26 VGA display controller block diagram 38

viii

 27 General purpose I/O devices on the Basys 3 38

 28 An un-illuminated seven-segment display 39

 29 Common anode circuit node 40

 30 Four-digit scanning display controller timing diagram 40

 31 Pmod ports; Front view as loaded on PCB 41

 32 Development flow 44

 33 CMOS inverter 48

 34 RTL diagram 62

 35 Synthesized schematic diagram 63

 36 LUT table 63

 37 Slice logic table 64

 38 Logic and memory table 64

 39 Power Report 65

 40 Simulation output results 65

 41 CSD multiplication timing summary 66

 42 General multiplication timing summary 66

 43 Basys 3 FPGA kit output 67

ix

LIST OF TABLES

Table No. Table Name Page No.

 1 Half adder truth table 6

 2 Full adder truth table 7

 3 Comparison between different of adders 12

 4 Binary to CSD conversion 16

 5 Binary to CSD conversion truth table 17

 6 Basys 3 FPGA component description 23

 7 Basys 3 power supply 25

 8 Keyboard commands 32

 9 Microsoft Intellimouse-Type extensions 33

 10 Basys 3 Pmod pin assignment 42

x

LIST OF ABBREVATIONS

DSP Digital Signal Processing

FPM Floating Point Multiplication

CSD Canonical Signed Digit

FPGA Field Programmable Gate Array

HDL Hardware Description Language

LSB Least Significant Bit

IEEE Institute of Electrical and Electronics Engineers

RCA Ripple Carry Adder

CLA Carry Look -Ahead Adder

CSA Carry Save Adder

CA Carry-Select Adder

SPST Spurious Power Suppression Technique

UT Urdhva Triyakbhyam

DDR Double Data Rate

LUT Look Up Tables

PLL Phase-Locked Loop

HR High Range

ODT On-Die Terminations

PHY Physical Layer

MiB mebibyte

RTL Register Transfer Level

EDA Electronic Design Automation

1

CHAPTER1

INTRODUCTION

The multiplication operation is one of the important operations in digital signal

processing (DSP) used in applications such as the Discrete Fourier Transform, Fast

Fourier Transform, convolution or digital filters. Thus, there has been a continuous research

for refining predefined multipliers and developing new approaches for efficient multiplier

architecture. There are many existing multiplier architectures such as Shift and Add

multiplier, Booth multiplier, Wallace tree multiplier, Array multiplier etc. Shift and Add

multiplier is the simplest among all however, large number of gates are required making

time inefficient architecture. High performance multipliers are preferred with regular

structures or reduced number of partial products. The array multiplier and Wallace tree

multiplier are based on the arrangement of adders aiming reduction in overall critical path

of the multiplication operation.

Many significant amounts of work have been published using the concept of Vedic

mathematics, obtaining efficient multiplier, divider, squaring and cube architectures. The

efficiency of multiplier is based on factors: (i) larger operation is reduced to the smaller

operation. (ii) the speed of addition operation in accumulation of partial products is

increased using carry select adders. The multiplier architecture is found to be efficient as

compared to the state-of-art Vedic multipliers. The reduction in number of stages in a Vedic

multiplication process leads to significant reduction in the propagation delay along with

switching power consumption. The multiplication operation is based on Urdhva

Tiryagbhyam algorithm of Vedic mathematics.

Generally, most of the multipliers consumes much area, consumes more power and work

with less accuracy. hence designing multipliers which offer either of the following design

targets-high speed, low power consumption, less area or even a combination of all these is

of substantial research interest.

2

1.1 PROJECT OBJECTIVE

The main aim of the project is to simulate and implement FPM(Floating Point Multiplication)

multiplication using CSD(Canonical Signed Digit)algorithm and compare it with existing

multipliers. Vivado design suite is used for simulation. Synthesis and implementation is done

using basys 3 DDR board, which is ready to use digital circuit development platform based

on the latest Artix -7 Field Programmable Gate Array (FPGA) from Xilinx. The performance

is compared in terms of power, area and delay

1.2 PROJECT OUTLINE

This project report is presented over the 4 remaining chapters. Chapter 2 presents Floating

Point Multiplication and provides the fundamentals of various adders and multipliers. Chapter

3 explains about Canonical Signed Digit (CSD) algorithm. Chapter 4 describes simulation and

synthesis tools necessary to simulate and synthesize the given hardware using Verilog

Hardware Description Language. Chapter 5 presents the simulation results which are

simulated using Vivado Design Suite simulator. Also the synthesis and implementation results

are carried out using basys 3 DDR board, which is ready to use digital circuit development

platform based on the latest Artix -7 Field Programmable Gate Array (FPGA) from Xilinx.

Finally, the results of the project work and conclusions are drawn.

3

CHAPTER 2

FLOATING POINT MULTIPLICATION

 2.1 NUMBER SYSTEM

The number system is a system generally used for representing or expressing numbers. It is a

mathematical notation which can be a combination of numbers and alphabets. There are

various kinds of number systems like binary, decimal, octal, hexadecimal based on the base.

The base is also called as “radix”.

2.1.1FIXED POINT

The term 'fixed point' refers to the corresponding manner in which the numbers are

represented. A fixed point decimal number system has a limited number of digits and a

decimal point in a fixed location.

To define a fixed-point type conceptually, all we need are two criterions: width of the number

and binary point position within the number

We will use the notation fixed <w, b> where w stands for the number of bits used as a whole

(the Width of a number), and b stands for the position of binary point counting from the Least

Significant Bit(LSB) (counting from 0).

For example, fixed<8,3> denotes an 8-bit fixed point number, of which 3 right most bits are

fractional. Therefore, the bit pattern:

 represents a real number:

00010.110

= 1 * 2^1 + 1 * 2^-1 + 1 * 2^-2

= 2 + 0.5 + 0.25= 2.75

Fixed point numbers are indeed an in depth relative to integer representation. The two only

differs within the position of binary point. In fact, you would possibly even consider integer

representation as a "special case" of fixed-point numbers, where the binary point is at position

0. All the arithmetic operations a computer can operate integer can therefore be applied to

fixed point number also. The disadvantage of number, is than in fact the loss of range and

4

precision. For example, in a fixed representation, our fractional part is only precise to a

quantum of 0.5. We cannot represent number like 0.75. We can represent 0.75 with fixed, but

then we lose range on the integer part.

2.1.2 FLOATING POINT

The floating point is the arithmetic using the representation of real numbers as an

approximation in supporting trade-off between range and precision. For this reason, floating-

point computation is usually found in systems which include very small and really large real

numbers, which require fast processing times.

In computers the real numbers are represented in floating point (FP) format. Usually this

suggests that the amount is split into exponent and fraction, which is additionally referred to

as significand or mantissa. A scientific notation with a symbol , exponent, mantissa

called floating point representation is employed for the important numbers. Its format is

Real number→mantissa×base^exponent

Where significand is an integer, base is an integer greater than or adequate to two, and

exponent is additionally an integer. For example:

1.2345 = 12345 x 10^-4

2.1.3 SINGLE PRECISION FLOATING POINT MULTIPLICATION

Most modern computers use Institute of Electrical and Electronics Engineers (IEEE) 754

standard for representation of floating-point numbers. One of the most commonly used

formats is the binary32 format of IEEE 754:

Sign bit-1 bit Exponent-8 bits

Significand/mantissa-23 bits

Note that exponent is encoded using an offset-binary representation, which suggests it is often

off by 127. So, if usually 10000000 in binary would be 128 in decimal, in single- precision

the worth of exponent is:

exponent=128−offset=128−127=1

5

2.1.4 FLOATING POINT MULTIPLICATION

From the literature, it is observed that various multipliers such as Array multiplier, Vedic

multiplier and Radix based multipliers are involved in multiplication.

In general, Floating Point Multiplication (FPM) of two numbers involves four steps:

• Non-signed multiplication of mantissas

• Normalization of the result

• Addition of the exponents, taking into account the bias.

• Calculation of the sign.

Let us consider two numbers

a=6.96875

b=-0.3418

Normalized values and biased exponents:

a=6.96875=1.7421875×2^2 b=−0.3418=−1.3672×2^−2

The exponents:

Exponent a=2 Exponent b=−2

The numbers in IEEE754 binary32: a=01000000110111110000000000000000(binary32)

=10111110101011110000000001101001(binary32)

The mantissa could be rewritten as following totaling 24 bits per operand:

Mantissa a=1.101111100000000000000002 Mantissa b=1.010111100000000011010012

Their multiplication totals in 48 bits:

Mantissa=1.001100001110001010110110111011100000000000000002

Which has to be truncated to 24 bits:

mantissaa×b=1.001100001110001010110112=2.3819186687469482421875 10

The exponents 2 and -2 can easily be summed up so only last thing to do is to normalize

fraction which means that the resulting number is:

a×b=−2.3819186687469482421875=−1.19095933437347412109375×21

Which could be written in IEEE 754 binary32 format as:

a×b=01000000000110000111000101011011binary32

6

2.2 ADDERS

An adder is a digital circuit which performs addition of numbers. In many computers and

other types of processors, adders are used in the ALU and also in other parts of the processors.

Adders are used to calculate addresses, table indices and are also used to perform increment

and decrement operations. The most common adders operate on binary numbers.

2.2.1 HALF ADDER(HA)

A combinational circuit that performs the addition of two single bits is called Half

Adder. The half adder adds two binary digits A and B. It has two outputs, sum and carry. The

carry signal represents an overflow into the next digit of a multi-digit addition. To design a

simple half adder we use an XOR gate for sum and an AND gate for carry.

 FIG 1 Half adder logic diagram.

Table 1 Half adder truth table

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

7

2.2.2 FULL ADDER(FA)

A combinational logic circuit that performs the addition of three single bits and produces two

outputs is called Full Adder. A, B and Cin are the inputs. Sum and C-OUT are the outputs. In

half adder we can add 2-bit binary numbers but we cannot add carry bit along with the two

binary numbers. But in full adder we can carry in bit along with two binary numbers.

 Table 2 Full adder truth table

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

Fig 2 Full adder logic diagram

8

2.2.3 RIPPLE CARRY ADDER(RCA)

Ripple carry adder is a structure of multiple full adders is cascaded in a manner to

gives the results of the addition of an n bit binary sequence and the carry will be

generated at every full adder stage. These carry output at each full adder stage is forwarded

to its next full adder and applied as a carry input to it. This process continues up to its last

stage of adder circuit. So, each carry output bit is rippled to the next stage of a full adder and

hence named as “RIPPLE CARRY ADDER”. The most important feature of it is to add the

input bit sequences if the sequence is 4 bit or 5 bit or any.

 There are various types in ripple-carry adders. They are:

• 4-bit ripple-carry adder

• 8-bit ripple-carry adder

• 16-bit ripple-carry adder

Fig 3 Ripple Carry adder logic diagram

2.2.4 CARRY LOOK AHEAD ADDER(CLA)

In ripple carry adders, for each adder block, the two bits that are to be added are available

instantly. However, each adder block waits for the carry to arrive from its previous block. So,

it is not possible to generate the sum and carry of any block until the input carry is known.

The block waits for the block to produce its carry. So, there will be a considerable time delay

which is carry propagation delay.

A carry look-ahead adder reduces the propagation delay by introducing more complex

hardware. In this design, the ripple carry design is suitably transformed such that the carry

logic over fixed groups of bits of the adder is reduced to two-level logic.

9

 Fig 4 Carry look ahead adder

2.2.5 CARRY SAVE ADDER(CSA)

A carry save adder is a type of digital adder used in computer microarchitecture to compute

the sum of three or more n-bit numbers in binary. It differs from other digital adders in that it

outputs two numbers of the same dimensions as the inputs, one which is a sequence of partial

sum bits and another which sequence of carry bits.

10

 Fig 5 Carry save adder

2.2.6 CARRY- SELECT ADDER(CA)

In electronics, a carry-select adder is a particular way to implement an adder which is a logic

element that computes the (n+1)-bit sum of two n-bit numbers.

The carry-select adder generally consists of two ripple carry adders and a multiplexer. Adding

two n-bit numbers with a carry-select adder is done with two adders (therefore two ripple

carry adders), in order to perform the calculation twice, one time with the assumption of the

carry-in being zero and the other assuming it will be one. After the two results are calculated,

the correct sum, as well as the correct carry-out, is then selected with the multiplexer once the

correct carry-in is known.

Fig 6 Carry select adder

11

Above is the basic building block of a carry-select adder, where the block size is 4. Two 4-bit

ripple carry adders are multiplexed together, where the resulting carry and sum bits are

selected by the carry-in. Since one ripple carry adder assumes a carry-in of 0, and the other

assumes a carry-in of 1, selecting which adder had the correct assumption via the actual carry-

in yields the desired result.

2.2.7 SUPERIOUS POWER SUPPRESSION TECHNIQUE ADDER(SPST)

Adder is a circuit that is combinational and calculates the sum of three (full adder) or two

(half adder) inputs. Full adder can be cascaded to produce n-stages of adder. This cascaded

adder structure is called as parallel adder. The sum and carry of any stage cannot be calculated

until the input carry occurs, this leads to a delay in the addition process. In order to overcome

the delay, carry look ahead adder is proposed which is said to be a fast adder. To improve the

speed of carry, look ahead adder, Spurious Power Suppression Technique (SPST) is used.

Fig 7 SPST adder

The SPST has a detection logic circuit find out if a transition in data bits of the result will

occur in circuits, e.g., multipliers or adders. When a part of the data doesn’t cause any change

in the final result of the circuit, that portion of the data is latched to avoid unwanted transitions

inside the processing units.

12

2.2.8 Comparison Between Different Types Of Adders:

 Table 3 Comparison between different types of Adders

S.No Adder Type No.Of AND Gates No.Of EX-OR

Gates

No.Of OR Gates

1 Half-Adder 1 1 -

2 Full Adder 2 2 1

3 8-Bit Ripple

Carry Adder

16 16 8

4 8-Bit Carry –

Look Ahead

Adder

16 16 8

5 4-Bit Carry

Save Adder

16 16 8

6 4-Bit Carry

Select Adder

16 16 8

2.3 MULTIPLIERS

Today’s processors require a very high-speed operation. Arithmetic operations such as

addition, subtraction and multiplication are used in various digital circuits for high-speed

computation. Multiplication is the basic arithmetic operation in signal processing. All the

signal and data processing operations like digital signal processing contain multiplication.

Speed is an essential parameter in a multiplication operation. It can be increased by reducing

the number of steps in the computation process. In a digital system design, the parameters that

determine the performance of the system are speed, power and area. As the multiplier requires

the longest delay among the basic operational blocks in a digital system, the critical path is

determined more by the multiplier. Also, a multiplier consumes much area and dissipates more

power. Hence, designing multipliers which offer a combination of the above parameters is

better.

13

A multiplier is one of the key hardware blocks in many digital signal processing systems.

Some of the DSP applications where a multiplier plays an important role include digital

filters, digital communications and spectral analysis. Many current DSP applications are

targeted at portable, battery-operated systems, in order that power dissipation becomes

one among the first design constraints. As multipliers are complex circuits and have to

operate at a high system clock rate, reducing the delay of a multiplier is an important

a part of satisfying the overall design. This operation involves two major steps:

Partial product generation and accumulation.

2.3.1 PARTIAL PRODUCTS

Formation of partial products

The basic algorithm for multiplication of two binary numbers, M(multiplier) and

N(multiplicand) makes use of the distributive property of multiplication. That is, if M can be

written as a sum of smaller numbers

M.N = (M0+M1+………. +Mm-1). N = M0N+M1N++Mm-1N
Also, a multiplier consumes most of the area and dissipates more power. Hence designing

multipliers which offer either of the following design targets – high speed, low power

consumption, less area or even a combination of them is preferred.

2.3.2 TYPES OF MULTIPLIERS

a. Shift-and-Add Multiplication

In this method, we add a number with itself and rotate the other number each time and

shift it by one bit to left along with the carry. If carry is present add those two numbers.

Fig 8 Shift- and add multiplier

14

This algorithm adds the multiplicand to itself by M times, where M denotes the multiplier.

To multiply these two numbers this

algorithm takes the digits of the multiplier and places the intermediate product in the

appropriate position to the left of earlier results.

15

CHAPTER 3

CANONICAL SIGNED DIGIT

CSD representations have proven to be useful in implementating multipliers with reduced

complexity, because cost of multiplication is a direct function of non zero bits in the multiplier

and as CSD algorithm helps in reducing the number of these non zero bits it is very useful in

implementing efficient multiplier.

The CSD format aims to scale back the amount of additives during multiplication. The CSD

format features a ternary set as against a binary set-in number representation. The symbols

utilized in this format are {-1, 0, 1}. The goal is to group consecutive 1s and alter them to

a ternary representation from binary representation. This is done ranging from the rightmost

1 and proceeding left until the last 1. So, this never has adjacent non- zero bits. It is proved

that the number of operations never exceeds n/2 and on a mean, it are often reduced to n/3.

3.1 Canonical Signed Digit Algorithm

Conversion from a binary representation to CSD representation requires the following

steps:

• Observe where there are two consecutive 1’s and convert the right most 1 into -1

• Add +1 to the next bits

The CSD presentation of a number is unique. The number of nonzero digits is minimal.

There cannot be two consecutive non-zero digits

for example, the binary value 1 1 1 1 1 (decimal number 31) could be written as

the

 signed-digit value 1 0 0 0 0 -1 = 25 - 20 =d31

 CSD representation of integers 1, 2, … 10 is as follows:

16

Table 4 Binary to CSD conversion

B2 B1 B0 C3 C2 C1 C0

0 0 0 0 0 0 0

0 0 1 0 0 0 1

0 1 0 0 0 1 0

0 1 1 0 1 0 -1

1 0 0 0 1 0 0

1 0 1 0 1 0 1

1 1 0 1 0 -1 0

1 1 1 1 0 0 -1

Converting binary number into CSD number can be achieved by continuously comparing

 adjacent two bits from the LSB to MSB. And to represent one bit in the CSD representation

 require two binary bits.

 So, -1 will be represented with 11. Here MSB represents sign bit and LSB represents main

 bit.

 If the sign bit is 1;

 Then it is a negative number

 Else;

 It is a positive number. i.e., sign bit ==0

And the main bit represents magnitude of the CSD bit.

As the conversion process needs to compare present bit and next b it of the binary number

and also the carry of the previous comparison as this generated carry also makes impact on

 the present bit of CSD number.

The truth table for this conversion which consists of present and next bit of binary number

And previous carry as inputs and sign and main bits of CSD number and present carry as

output is as follows:

If the input is 4 bit : A3 A2 A1 A0

17

Table 5 Binary to CSD conv. Truth Table

A1 A0 C(i) sign main C(i+1)

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 0 0 1

1 0 0 0 0 0

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 0 1

Same truth table works for remaining bit comparisons. By using above truth table and
k-map reduction technique calculating the Boolean expressions for sign bit, main bit and

present carry.

DERIVATIONS FROM TRUTH TABLE

SIGN:

 A1.A0’.Carry(i)+A1.A0.Carry(i)’

 A1(A0’.Carry(i)+A0.Carry(i)’

 Sign =A1(A0 ^ C(i)).

18

MAIN:

 A0’.Carry(i)+A0.Carry(i)’

 Main=A0 ^ C(i).

C(i+1):

 C(i+1) =A0.C(i)+A1.C(i)+A1.A0.

These Boolean expressions are used to form a circuit called CSD converter circuit. This

circuit consists of Two adjacent bits of binary number as inputs along with previous carry.

And outputs of this circuit will be sign, main bits of CSD number and present carry which

will be carried forward to next comparison.

If A0 and A1 are adjacent bits to be compared and C0 is the previous carry and om0 and

os0 are main and sign bits of CSD number and c1 is the present carry then the CSD

converter circuit is as follows:

FIG 9 CSD Converter Circuit

Now to convert given entire binary number into CSD number this CSD converter circuit

will be used repeatedly.

 If the input is A= A3 A2 A1 A0

 And outputs:

19

 Main = om4 om3 om2 om1 om0

 Sign = os4 os3 os2 os1 os0

 And always the first previous carry will be taken as 0. i.e., c0=0.

 The block diagram for binary to CSD converter is as follows:

 FIG 10 Binary to CSD conv. Block Diagram

3.2 Comparison of Binary multiplication Vs. CSD multiplication

Let us consider an example-14 multiplied with 15.

Multiplicand => 1110; Multiplier=> 1111.

 2^7+2^6+2^4+2^1=d210 (2^7+2^6+2^5)-(2^3+2^2+2^1)=d210

Here when we observe binary multiplication the number of stages involved for

multiplication are more when compared to that of the stages of CSD multiplications. It is

20

clearly observed that the number of stages are decreased as the number of 1’s of the

multiplier are reduced and are converted into 0’s using the CSD algorithm. Later after

performing the multiplication in binary and CSD respectively the result is converted into

decimal format. And when observed the results both are of same value in decimal format.

That’s the reason we are using CSD algorithm for efficient multiplication- as the number of

stages or partial products terms are reduced the hardware requirement is also reduced

correspondingly which leads to reduction in area utilization.

3.3 CSD FLOW

FIG 11 CSD Multiplication flow chart

3.4 FPM Using CSD

 FIG 12 FPM Using CSD

21

CHAPTER 4

OVERVIEW OF FPGA AND EDA SOFTWARE

4.1 INTRODUCTION

Developing a large FPGA –based system is an involved process that consists of many

complex transformations and optimization algorithms. Software tools are needed to automate

some of the tasks.

We use basys 3 Board which is a complete, ready-to- use digital circuit development platform

based on the latest Artix-7 Field Programmable Gate Array (FPGA) (XC7A35T- 1CPG236C)

from Xilinx for synthesis and implementation, and use the Vivado Design Suite for

simulation.

 A Field Programmable Gate Array (FPGA) is a logic device that contains a two-

dimensional add shift of generic logic cells and programmable switches. A logic cell can be

programmed to perform a simple function, and a programmable switch can be customized to

provide interconnection among the logic cells.

 A custom design can be implemented by specifying the function of each logic cell and

selectively setting the connection of each programmable switch. Once the design and

synthesis are completed, we can use a simple adapter cable to download the desired logic cell

and switch configuration to the FPGA device and obtain the custom circuit. Since this process

can be done “in the field” rather than “in fabrication facility (fab),” the device is known as

field programmable.

4.2 OVERVIEW OF DIGILENT BASYS 3 BOARD

The Basys 3 board is a complete, ready-to-use digital circuit development platform based on

the latest Artix-7 Field Programmable Gate Array (FPGA) from Xilinx®. With its high-

capacity FPGA (Xilinx part number XC7A35T- 1CPG236C), low overall cost, and collection

of USB, VGA, and other ports, the Basys 3 can host designs ranging from introductory

combinational circuits to complex sequential circuits like embedded processors and

controllers. It includes enough switches, LEDs, and other I/O devices to allow a large number

of designs to be completed without the need for any additional hardware, and enough

uncommitted FPGA I/O pins to allow designs to be expanded using Digilent Pmods or other

custom boards and circuits.

22

4.2.1 Features Of Basys 3

• 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-

flops)

• 1,800 Kbits of fast block RAM

• Five clock management tiles, each with a phase-locked loop(PLL)

• 90 DSP slices

• Internal clock speeds exceeding 450MHz

• On-chip analog-to-digital converter(XADC)

• 16 user switches

• 16 user LEDs

• 5 user push buttons

• 4-digit7-segmentdisplay

• Three Pmod ports

• Pmod for XADC signals

• 12-bit VGA output

• USB-UART Bridge

• Serial Flash

• Digilent USB-JTAG port for FPGA programming and communication

• USB HID Host for mice, keyboards and memory sticks

Figure13 Basys3FPGAboardwithcallouts.

16 15 14

 13

12 11 10

23

 Table 6 Basys 3 FPGA Component Description
Callout Component Description Callout Component Description

1 Power good LED 9 FPGA configuration reset button

2 Pmod port(s) 10 Programming mode jumper

3 Analog signal Pmod port (XADC) 11 USB host connector

4 Four digit 7-segment display 12 VGA connector

5 Slide switches (16) 13 Shared UART/ JTAG USB port

6 LEDs (16) 14 External power connector

7 Pushbuttons (5) 15 Power Switch

8 FPGA programming done LED 16 Power Select Jumper

4.2.2 Power Supplies

The Basys 3 board can receive power from the Digilent USB-JTAG port (J4) or from a 5V

external power supply. Jumper JP3 (near the power switch) determines which source is used.

All Basys 3 power supplies can be turned on and off by a single logic-level power switch

(SW16). A power-good LED (LD20), driven by the "power good" output of the LTC3633

supply, indicates that the supplies are turned on and operating normally. An overview of the

Basys 3 power circuit is shown in Fig. 2.

Figure 14 Basys 3 power circuit.

The USB port can deliver enough power for the vast majority of designs. A few demanding

applications, including any that drive multiple peripheral boards, might require more power

24

than the USB port can provide. Also, some applications may need to run without being

connected to a PC's USB port. In these instances an external power supply or battery pack can

be used.

An external power supply can be used by plugging into the external power header (J6) and

setting jumper JP2 to "EXT". The supply must deliver 4.5VDC to 5.5VDC and at least 1A of

current (i.e., at least 5W of power). Many suitable supplies can be purchased through Digi-

Key or other catalog vendors.

An external battery pack can be used by connecting the battery's positive terminal to the

"EXT" pin of J6 and the negative terminal to the "GND" pin of J6. The power provided to

USB devices that are connected to Host connector J2 is not regulated. Therefore, it is necessary

to limit the maximum voltage of an external battery pack to 5.5V DC. The minimum voltage

of the battery pack depends on the application; if the USB Host function (J2) is used, at least

4.6V needs to be provided. In other cases, the minimum voltage is 3.6V.

Voltage regulator circuits from Linear Technology create the required 3.3V, 1.8V, and 1.0V

supplies from the main power input. Table 2 provides additional information (typical currents

depend strongly on FPGA configuration and the values provided are typical of medium

size/speed designs).

 Table 7 Basys 3 power supplies.

Supply Circuits Device Current (max/typical)

3.3V FPGA I/O, USB ports,

Clocks,

Flash, PMODs

IC10: LTC3633 2A/0.1 to 1.5A

1.0V FPGA Core IC10: LTC3633 2A/ 0.2 to 1.3A

1.8V FPGA Auxiliary and

Ram

IC11: LTC3621 300mA/ 0.05 to 0.15A

4.2.3 FPGA Configuration

After power-on, the Artix-7 FPGA must be configured (or programmed) before it can perform

any functions. You can configure the FPGA in one of three ways:

A PC can use the Digilent USB-JTAG circuitry (portJ4, labeled "PROG") to program the

FPGA any time the power is on.

A file stored in the nonvolatile serial (SPI) flash device can be transferred to the FPGA using

the SPI port.

A programming file can be transferred from a USB memory stick attached to the USB HID

port.

25

Figure 3 shows the different options available for configuring the FPGA. An on-board "mode"

jumper (JP1) selects between the programming modes.

Figure 15 Basys 3 configuration options

The FPGA configuration data is stored in files called bitstreams that have the .bit file

extension. The Vivado software from Xilinx can create bitstreams from VHDL, Verilog®, or

schematic-based source files.

Bitstreams are stored in SRAM-based memory cells within the FPGA. This data defines the

FPGA's logic functions and circuit connections, and it remains valid until it is erased by

removing board power, by pressing the reset button attached to the PROG input, or by writing

a new configuration file using the JTAG port.

An Artix-7 35T bitstream is typically 17,536,096 bits and can take a long time to transfer. The

time it takes to program the Basys 3 can be decreased by compressing the bitstream before

programming, and then allowing the FPGA to decompress the bitstream itself during

configuration. Depending on design complexity, compression ratios of 10x can be achieved.

Bitstream compression can be enabled within the Xilinx Tools (Vivado) to occur during

generation. For instructions on how to do this, consult the Xilinx documentation for the toolset

being used.

After being successfully programmed, the FPGA will cause the "DONE" LED to illuminate.

Pressing the "PROG" button at any time will reset the configuration memory in the FPGA.

After being reset, the FPGA will immediately attempt to reprogram itself from whatever

method has been selected by the programming mode jumper.

The following sections provide greater detail about programming the Basys 3 using the

different methods available.

26

4.2.3.1 JTAG Programming

The Xilinx Tools typically communicate with FPGAs using the Test Access Port and

Boundary-Scan Architecture, commonly referred to as JTAG. During JTAG programming, a

.bit file is transferred from the PC to the FPGA using the onboard Digilent USB-JTAG

circuitry (port J4) or an external JTAG programmer, such as the Digilent JTAG-HS2 attached

to port J5 (located below port JA). You can perform JTAG programming any time after the

Basys 3 has been powered on regardless of what the mode jumper (JP1) is set to. If the FPGA

is already configured, then the existing configuration is overwritten with the bitstream being

transmitted over JTAG. Setting the mode jumper to the JTAG setting (seen in Fig. 3) is useful

to prevent the FPGA from being configured from any other bitstream source until a JTAG

programming occurs.

Programming the Basys 3 with an uncompressed bitstream using the on-board USB_JTAG

circuitry usually takes around five seconds. JTAG programming can be done using the

hardware server in Vivado. The demonstration project available at digilentinc.com provides

an in-depth tutorial on how to program your board.

4.2.3.2 JTA Programming

When programming a nonvolatile flash device, a bitstream file is transferred to the flash in a

two-step process. First, the FPGA is programmed with a circuit that can program flash devices,

and then data is transferred to the flash device via the FPGA circuit (this complexity is hidden

from the user by the Xilinx Tools). After the flash device has been programmed, it can

automatically configure the FPGA at a subsequent power-on or reset event as determined by

the mode jumper setting (see Fig. 3). Programming files stored in the flash device will remain

until they are overwritten, regardless of power-cycle events.

Programming the flash can take as long as one or two minutes, which is mostly due to the

lengthy erase process inherent to the memory technology. Once written, however, FPGA

configuration can be very fast – less than a second. Bitstream compression, SPI bus width,

and configuration rate are factors controlled by the Xilinx Tools that can affect configuration

speed.

Quad-SPI programming can be performed using Vivado.

4.2.3.3 USB Host Programming

You can program the FPGA from a pen drive attached to the USB-HID port (J2) by doing the

following:

1. Format the storage device (Pen drive) with a FAT32 file system.

27

2. Place a single bit configuration file in the root directory of the storage device.

3. Attach the storage device to the Basys 3.

4. Set the JP1 Programming Mode jumper on the Basys 3 to "USB".

5. Push the PROG button or power-cycle the Basys 3.

The FPGA will automatically be configured with the .bit file on the selected storage device.

Any .bit files that are not built for the proper Artix-7 device will be rejected by the FPGA.

The Auxiliary Function Status, or "BUSY" LED (LD16), gives visual feedback on the state

of the configuration process when the FPGA is not yet programmed:

• When steadily lit, the auxiliary microcontroller is either booting up or currently reading

the configuration medium (pen drive) and downloading a bitstream to the FPGA.

• A slow pulse means the microcontroller is waiting for a configuration medium to be

plugged in.

• In case of an error during configuration, the LED will blink rapidly

When the FPGA has been successfully configured, the behavior of the LED is application-

specific. For example, if a USB keyboard is plugged in, a rapid blink will signal the receipt of

an HID input report from the keyboard.

4.2.4 Memory

The Basys 3 board contains a 32Mbit non-volatile serial Flash device, which is attached to the

Artix-7 FPGA using a dedicated quad-mode (x4) SPI bus. The connections and pin

assignments between the FPGA and the serial flash device are shown in Fig. 4.

FPGA configuration files can be written to the Quad SPI Flash (Spansion part number

S25FL032), and mode settings are available to cause the FPGA to automatically read a

configuration from this device at power on. An Artix-7 35T configuration file requires just

over two Mbytes of memory, leaving approximately 48% of the flash device available for user

data.

NOTE: Refer to the manufacturer's data sheets and the reference designs posted on Digilent's

website for more information about the memory devices.

 Figure 16 Basys 3 external memory

CS#

SDI/DQ0

SDO/DQ

1
SC SPI

K1

9

D1

8

D1

SPI
Flash

28

4.2.5 Oscillators/Clocks

The Basys 3 board includes a single 100 MHz oscillator connected to pin W5 (W5 is a MRCC

input on bank 34). The input clock can drive MMCMs or PLLs to generate clocks of various

frequencies and with known phase relationships that may be needed throughout a design.

Some rules restrict which MMCMs and PLLs may be driven by the 100 MHz input clock. For

a full description of these rules and of the capabilities of the Artix-7 clocking resources, refer

to the "7 Series FPGAs Clocking Resources User Guide" available from Xilinx.

Xilinx offers the LogiCORE™ Clocking Wizard IP to help users generate the different clocks

required for a specific design. This wizard properly instantiates the needed MMCMs and PLLs

based on the desired frequencies and phase relationships specified by the user. The wizard will

then output an easy to use wrapper component around these clocking resources that can be

inserted into the user's design. The Clocking Wizard can be accessed from within IP Catalog,

which can be found under the Project Manager section of the Flow Navigator in Vivado.

4.2.6 USB-UART Bridge(Serial Port)

The Basys 3 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J4) that

allows you to use PC applications to communicate with the board using standard Windows

COM port commands. Free USB-COM port drivers, available from www.ftdichip.com under

the "Virtual Com Port" or VCP heading, convert USB packets to UART/serial port data. Serial

port data is exchanged with the FPGA using a two-wire serial port (TXD/RXD). After the

drivers are installed, I/O commands can be used from the PC directed to the COM port to

produce serial data traffic on the B18 and A18 FPGA pins.

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the

transmit LED (LD18) and the receive LED (LD17). Signal names that imply direction are

from the point-of-view of the DTE (Data Terminal Equipment), in this case the PC.

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the

USB-UART and USB-JTAG functions behave entirely independent of one another.

Programmers interested in using the UART functionality of the FT2232 within their design do

not need to worry about the JTAG circuitry interfering with the UART data transfers, and

vice-versa. The combination of these two features into a single device allows the Basys 3 to

be programmed, communicated with via UART, and powered from a computer attached with

http://www.ftdichip.com/

29

a single Micro USB cable. The connections between the FT2232HQ and the Artix-7 are shown

in Fig. 17.

Figure 17 basys3 FT2232HQ Connection

4.2.7 USB HID Host

The Auxiliary Function microcontroller (Microchip PIC24FJ128) provides the Basys 3 with

USB HID host capability. After power-up, the microcontroller is in configuration mode, either

downloading a bitstream to the FPGA or waiting for it to be programmed from other sources.

Once the FPGA is programmed, the microcontroller switches to application mode, which in

this case is USB HID Host mode. Firmware in the microcontroller can drive a mouse or a

keyboard attached to the type A USB connector at J2 labeled "USB." Hub support is not

currently available, so only a single mouse or a single keyboard can be used. The PIC24 drives

several signals into the FPGA – two are used to implement a standard PS/2 interface for

communication with a mouse or keyboard, and the others are connected to the FPGA's two-

wire serial programming port, so the FPGA can be programmed from a file stored on a USB

pen drive.

Figure 18 Basys 3 PIC24 connections.

30

4.2.7.1 HID CONTROLLER

The Auxiliary Function microcontroller hides the USB HID protocol from the FPGA and

emulates an old-style PS/2 bus. The microcontroller behaves just like a PS/2 keyboard or

mouse would. This means new designs can re-use existing PS/2 IP cores. Mice and keyboards

that use the PS/2 protocol use a two-wire serial bus (clock and data) to communicate with a

host. On the Basys 3, the microcontroller emulates a PS/2 device while the FPGA plays the

role of the host. Both the mouse and the keyboard use 11-bit words that include a start bit,

data byte (LSB first), odd parity, and stop bit, but the data packets are organized differently,

and the keyboard interface allows bi- directional data transfers (so the host device can

illuminate state LEDs on the keyboard). Bus timings are shown in Fig. 8.

Figure 19 PS/2 device-to host timing diagram.

The clock and data signals are only driven when data transfers occur; otherwise they are held

in the idle state at logic '1.' This requires that when the PS/2 signals are used in a design,

internal pull-ups must be enabled in the FPGA on the data and clock pins. The clock signal is

normally driven by the device, but may be held low by the host in special cases. The timings

define signal requirements for mouse-to-host communications and bi-directional keyboard

communications. A PS/2 interface circuit can be implemented in the FPGA to create a

keyboard or mouse interface.

When a keyboard or mouse is connected to the Basys 3, a "self-test passed" command (0xAA)

is sent to the host. After this, commands may be issued to the device. Since both the keyboard

and the mouse use the same PS/2 port, one can tell the type of device connected using the

device ID. This ID can be read by issuing a Read ID command (0xF2). Also, a mouse sends

31

its ID (0x00) right after the "self-test passed" command, which distinguishes it from a

keyboard.

4.2.7.2 Keyboard

The keyboard uses open-collector drivers so the keyboard, or an attached host device, can

drive the two-wire bus (if the host device will not send data to the keyboard, then the host can

use input-only ports).

PS/2-style keyboards use scan codes to communicate key press data. Each key is assigned a

code that is sent whenever the key is pressed. If the key is held down, the scan code will be

sent repeatedly about once every 100ms. When a key is released, an F0 key-up code is sent,

followed by the scan code of the released key. If a key can be shifted to produce a new

character (like a capital letter), then a shift character is sent in addition to the scan code and the

host must determine which ASCII character to use. Some keys, called extended keys, send an

E0 ahead of the scan code (and they may send more than one scan code). When an extended

key is released, an E0 F0 key-up code is sent, followed by the scan code. Scan codes for most

keys are shown in Fig. 9.

Figure 20 Keyboard scan codes.

A host device can also send data to the keyboard. Table 3 shows a list of some common

commands a host might send.

The keyboard can send data to the host only when both the data and clock lines are high (or

idle). Because the host is the bus master, the keyboard must check to see whether the host is

sending data before driving the bus. To facilitate this, the clock line is used as a "clear to send"

32

signal. If the host drives the clock line low, the keyboard must not send any data until the

clock is released. The keyboard sends data to the host in 11-bit words that contain a '0' start

bit, followed by 8-bits of scan code (LSB first), followed by an odd parity bit, and terminated

with a '1' stop bit. The keyboard generates 11 clock transitions (at 20 to 30 KHz) when the data

is sent, and data is valid on the falling edge of the clock.

 Table 8 Keyboard commands.

Command Action

ED

Set Num Lock, Caps Lock, and Scroll Lock LEDs. Keyboard returns FA after
receiving ED, then

host sends a byte to set LED status: bit 0 sets Scroll Lock, bit 1 sets Num

Lock, and bit 2 sets Caps lock. Bits 3 to 7 are ignored.

EE Echo (test). Keyboard returns EE after receiving EE.

F3
Set scan code repeat rate. Keyboard returns F3 on receiving FA, then host
sends second byte
to set the repeat rate.

FE Resend. FE directs keyboard to re-send most recent scan code.

FF Reset. Resets the keyboard.

4.2.7.3 MOUSE

Once entered in stream mode and data reporting has been enabled, the mouse outputs a clock

and data signal when it is moved. Otherwise, these signals remain at logic '1.' Each time the

mouse is moved, three 11-bit words are sent from the mouse to the host device, as shown in

Fig. 10. Each of the 11-bit words contains a '0' start bit, followed by 8 bits of data (LSB first),

followed by an odd parity bit, and terminated with a '1' stop bit. Thus, each data transmission

contains 33 bits, where bits 0, 11, and 22 are '0' start bits, and bits 11, 21, and 33 are '1' stop

bits. The three 8-bit data fields contain movement data as shown in the Fig. 10. Data is valid

at the falling edge of the clock, and the clock period is 20 to 30 KHz.

The mouse assumes a relative coordinate system wherein moving the mouse to the right

generates a positive number in the X field, and moving to the left generates a negative number.

Likewise, moving the mouse up generates a positive number in the Y field, and moving down

represents a negative number (the XS and YS bits in the status byte are the sign bits – a '1'

indicates a negative number). The magnitude of the X and Y numbers represent the rate of

mouse movement; the larger the number, the faster the mouse is moving (the XV and YV bits

in the status byte are movement overflow indicators – a '1' means overflow has occurred). If

the mouse moves continuously, the 33-bit transmissions are repeated every 50ms or so. The L

and R fields in the status byte indicate Left and Right button presses (a '1' indicates that the

33

button is being pressed).

Figure 21 Mouse data format

The microcontroller also supports Microsoft® IntelliMouse®-type extensions for reporting

back a third axis representing the mouse wheel, as shown in Table 4.

 Table 9 Microsoft Intellimouse-type extensions, commands, and actions.

Command Action

EA
Set stream mode. The mouse responds with "acknowledge" (0xFA) then resets
its movement
counters and enters stream mode.

F4

Enable data reporting. The mouse responds with "acknowledge" (0xFA) then
enables data
reporting and resets its movement counters. This command only affects

behavior in stream mode. Once issued, mouse movement will automatically

generate a data packet.

F5
Disable data reporting. The mouse responds with "acknowledge" (0xFA) then
disables data
reporting and resets its movement counters.

F3

Set mouse sample rate. The mouse responds with "acknowledge" (0xFA) then

reads one more byte from the host. This byte is then saved as the new sample

rate, and a new "acknowledge"
packet is issued.

FE Resend. FE directs mouse to re-send last packet.

FF Reset. The mouse responds with "acknowledge" (0xFA) then enters reset mode.

4.2.8 VGA PORT

NOTE: A helpful way to understand the way that VGA signals are transmitted is to understand

the method of which CRT (Cathode Ray Tubes) function for displaying images. Although the

technology may seem outdated, it is from this legacy that many of the signal names and

timings have originated.

The Basys 3 board uses 14 FPGA signals to create a VGA port with 4-bits per colour and the

two standard sync signals (HS – Horizontal Sync, and VS – Vertical Sync). The colour signals

use resistor-divider circuits that work in conjunction with the 75-ohm termination resistance

34

of the VGA display to create 16 signal levels each on the red, green, and blue VGA signals.

This circuit, shown in Fig. 11, produces video colour signals that proceed in equal increments

between 0V (fully off) and 0.7V (fully on). Using this circuit, 4096 different colours can be

displayed, one for each unique 12-bit pattern. A video controller circuit must be created in the

FPGA to drive the sync and colour signals with the correct timing in order to produce a

working display system.

 FIG 22 VGA Port Pin Description.

4.2.8.1 VGA SYSTEM TIMING

VGA signal timings are specified, published, copyrighted, and sold by the VESA®

organization (www.vesa.org). The following VGA system timing information is provided as

an example of how a VGA monitor might be driven in 640 by 480 mode.

NOTE: For more precise information, or for information on other VGA frequencies, refer to

documentation available at the VESA website.

CRT-based VGA displays use amplitude-modulated moving electron beams (or cathode rays)

to display information on a phosphor-coated screen. LCD displays use an array of switches

that can impose a voltage across a small amount of liquid crystal, thereby changing light

http://www.vesa.org/

35

permittivity through the crystal on a pixel-by-pixel basis. Although the following description

is limited to CRT displays, LCD displays have evolved to use the same signal timings as CRT

displays (so the "signals" discussion below pertains to both CRTs and LCDs). Color CRT

displays use three electron beams (one for red, one for blue, and one for green) to energize the

phosphor that coats the inner side of the display end of a cathode ray tube (see Fig. 12).

Figure 23 Colour CRT display.

Electron beams emanate from "electron guns" which are finely-pointed heated cathodes placed

in close proximity to a positively charged annular plate called a "grid." The electrostatic force

imposed by the grid pulls rays of energized electrons from the cathodes, and those rays are

fed by the current that flows into the cathodes. These particle rays are initially accelerated

towards the grid, but they soon fall under the influence of the much larger electrostatic force

that results from the entire phosphor-coated display surface of the CRT being charged to 20kV

(or more). The rays are focused to a fine beam as they pass through the center of the grids,

and then they accelerate to impact on the phosphor-coated display surface. The phosphor

surface glows brightly at the impact point, and it continues to glow for several hundred

microseconds after the beam is removed. The larger the current fed into the cathode, the

brighter the phosphor will glow.

Between the grid and the display surface, the beam passes through the neck of the CRT where

two coils of wire produce orthogonal electromagnetic fields. Because cathode rays are

composed of charged particles (electrons), they can be deflected by these magnetic fields.

Current waveforms are passed through the coils to produce magnetic fields that interact with

the cathode rays and cause them to transverse the display surface in a "raster" pattern,

horizontally from left to right and vertically from top to bottom, as shown in Fig. 13. As the

36

cathode ray moves over the surface of the display, the current sent to the electron guns can be

increased or decreased to change the brightness of the display at the cathode ray impact point.

Information is only displayed when the beam is moving in the "forward" direction (left to right

and top to bottom), and not during the time the beam is reset back to the left or top edge of the

display. Much of the potential display time is therefore lost in "blanking" periods when the

beam is reset and stabilized to begin a new horizontal or vertical display pass. The size of the

beams, the frequency at which the beam can be traced across the display, and the frequency at

which the electron beam can be modulated determine the display resolution.

Modern VGA displays can accommodate different resolutions, and a VGA controller circuit

dictates the resolution by producing timing signals to control the raster patterns. The controller

must produce synchronizing pulses at 3.3V (or 5V) to set the frequency at which current flows

through the deflection coils, and it must ensure that video data is applied to the electron guns

at the correct time. Raster video displays define a number of "rows" that corresponds to the

number of horizontal passes the cathode makes over the display area, and a number of

"columns" that corresponds to an area on each row that is assigned to one "picture element"

or pixel. Typical displays use from 240 to 1200 rows and from 320 to 1600 columns. The

overall size of a display and the number of rows and columns determines the size of each pixel.

Figure 24 VGA horizontal synchronization.

37

Video data typically comes from a video refresh memory; with one or more bytes assigned to

each pixel location (the Basys 3 uses 12-bits per pixel). The controller must index into video

memory as the beams move across the display, and retrieve and apply video data to the display

at precisely the time the electron beam is moving across a given pixel.

A VGA controller circuit must generate the HS and VS timings signals and coordinate the

delivery of video data based on the pixel clock. The pixel clock defines the time available to

display one pixel of information. The VS signal defines the "refresh" frequency of the display,

or the frequency at which all information on the display is redrawn. The minimum refresh

frequency is a function of the display's phosphor and electron beam intensity, with practical

refresh frequencies falling in the 50Hz to 120Hz range. The number of lines to be displayed

at a given refresh frequency defines the horizontal "retrace" frequency. For a 640-pixel by

480-row display using a 25 MHz pixel clock and 60 +/-1Hz refresh, the signal timings shown

in Fig. 14 can be derived. Timings for sync pulse width and front and back porch intervals

(porch intervals are the pre- and post-sync pulse times during which information cannot be

displayed) are based on observations taken from actual VGA displays.

 Figure 25 Signal timings for a 640-pixel by 480 row display using a 25 MHz pixel clock

and 60 Hz vertical refresh.

A VGA controller circuit, such as the one diagramed in Fig. 15, decodes the output of a

horizontal-sync counter driven by the pixel clock to generate HS signal timings. You can use

this counter to locate any pixel location on a given row. Likewise, the output of a vertical-

sync counter that increments with each HS pulse can be used to generate VS signal timings,

38

and you can use this counter to locate any given row. These two continually running counters

can be used to form an address into video RAM. No time relationship between the onset of

the HS pulse and the onset of the VS pulse is specified, so you can arrange the counters to

easily form video RAM addresses, or to minimize decoding logic for sync pulse generation.

Figure 26 VGA display controller block diagram.

4.2.9 BASIC I/O

The Basys 3 board includes sixteen slide switches, five push buttons, sixteen individual LEDs,

and a four-digit seven- segment display, as shown in Fig. 16. The pushbuttons and slide

switches are connected to the FPGA via series resistors to prevent damage from inadvertent

short circuits (a short circuit could occur if an FPGA pin assigned to a pushbutton or slide

switch was inadvertently defined as an output). The five pushbuttons, arranged in a plus-sign

configuration, are "momentary" switches that normally generate a low output when they are

at rest, and a high output only when they are pressed. Slide switches generate constant high

or low inputs depending on their position.

 Figure 27 General purpose I/O devices on the Basys 3.

Zero

Set

64us

Detect
Reset

CE

Set

Reset

Counter

Zero

39

The sixteen individual high-efficiency LEDs are anode-connected to the FPGA via 330 ohm

resistors, so they will turn on when a logic high voltage is applied to their respective I/O pin.

Additional LEDs, which are not user- accessible, indicate power-on, FPGA programming

status, and USB port status.

4.2.9.1 Seven-Segment Display
The Basys 3 board contains one four-digit common anode seven-segment LED display. Each

of the four digits is composed of seven segments arranged in a "figure 8" pattern, with an LED

embedded in each segment. Segment LEDs can be individually illuminated, so any one of 128

patterns can be displayed on a digit by illuminating certain LED segments and leaving the

others dark, as shown in Fig. 17. Of these 128 possible patterns, the ten corresponding to the

decimal digits are the most useful.

Figure 28 An un-illuminated seven-segment display and nine illumination patterns

corresponding to decimal digits.

The anodes of the seven LEDs forming each digit are tied together into one "common anode"

circuit node, but the LED cathodes remain separate, as shown in Fig. 18. The common anode

signals are available as four "digit enable" input signals to the 4-digit display. The cathodes of

similar segments on all four displays are connected into seven circuit nodes labeled CA

through CG (for example, the four "D" cathodes from the four digits are grouped together into

a single circuit node called "CD"). These seven cathode signals are available as inputs to the

4-digit display.

This signal connection scheme creates a multiplexed display, where the cathode signals are

common to all digits but they can only illuminate the segments of the digit whose

corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low.

However, since the Basys 3 uses transistors to drive enough current into the common anode

point, the anode enables are inverted. Therefore, both the AN0..3 and the CA..G/DP signals

are driven low when active.

40

Figure 29 Common anode circuit node.

A scanning display controller circuit can be used to show a four-digit number on this display.

This circuit drives the anode signals and corresponding cathode patterns of each digit in a

repeating, continuous succession at an update rate that is faster than the human eye can detect.

Each digit is illuminated just one-fourth of the time, but because the eye cannot perceive the

darkening of a digit before it is illuminated again, the digit appears continuously illuminated.

If the update, or "refresh", rate is slowed to around 45Hz, a flicker can be noticed in the

display.

For each of the four digits to appear bright and continuously illuminated, all four digits should

be driven once every 1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example,

in a 62.5Hz refresh scheme, the entire display would be refreshed once every 16ms, and each

digit would be illuminated for 1/4 of the refresh cycle, or 4ms. The controller must drive the

cathodes

low with the correct pattern when the corresponding anode signal is driven high. To illustrate

the process, if AN0 is asserted while CB and CC are asserted, then a "1" will be displayed in

digit position 1. Then, if AN1 is asserted while CA, CB, and CC are asserted, a "7" will be

displayed in digit position 2. If AN0, CB, and CC are driven for 4ms, and then AN1, CA, CB,

and CC are driven for 4ms in an endless succession, the display will show "71" in the first two

digits. An example timing diagram for a four-digit controller is shown in Fig. 19.

 Figure 30 Four-digit scanning display controller timing diagram.

Refresh period = 1ms to 16ms

Digit period = Refresh / 4

Digit 0 Digit 1 Digit 2 Digit 3

41

4.2.10 PMOD PORTS

The Pmod ports are arranged in a 2x6 right-angle, and are 100-mil female connectors that mate

with standard 2x6 pin headers. Each 12-pin Pmod port provides two 3.3V VCC signals (pins

6 and 12), two Ground signals (pins 5 and 11), and eight logic signals, as shown in Fig. 20.

The VCC and Ground pins can deliver up to 1A of current. Pmod data signals are not matched

pairs, and they are routed using best-available tracks without impedance control or delay

matching. Pin assignments for the Pmod I/O connected to the FPGA are shown in Table 6.

 Figure 31 Pmod ports; front view as loaded on PCB.

 Table 10 Basys 3 Pmod pin assignment

Pmod JA Pmod JB Pmod JC Pmod XDAC

JA1: J1 JB1: A14 JC1: K17 JXADC1: J3

JA2: L2 JB2: A16 JC2: M18 JXADC2: L3

JA3: J2 JB3: B15 JC3: N17 JXADC3: M2

JA4: G2 JB4: B16 JC4: P18 JXADC4: N2

JA7: H1 JB7: A15 JC7: L17 JXADC7: K3

JA8: K2 JB8: A17 JC8: M19 JXADC8: M3

JA9: H2 JB9: C15 JC9: P17 JXADC9: M1

JA10: G3 JB10: C16 JC10: R18 JXADC10: N1

Digilent produces a large collection of Pmod accessory boards that can attach to the Pmod

expansion ports to add ready-made functions like A/Ds, D/As, motor drivers, sensors, and

other functions. See www.digilentinc.com for more information.

http://www.digilentinc.com/

42

4.2.10.1 DUAL ANALOG/DIGITAL PMOD
The on-board Pmod expansion port, labeled "JXADC", is wired to the auxiliary analog input

pins of the FPGA. Depending on the configuration, this connector can be used to input

differential analog signals to the analog-to- digital converter inside the Artix-7 (XADC). Any

or all pairs in the connector can be configured either as analog input or digital input-output.

The Dual Analog/Digital Pmod on the Basys 3 differs from the rest in the routing of its traces.

The eight data signals are grouped into four pairs, with the pairs routed closely coupled for

better analog noise immunity. Furthermore, each pair has a partially loaded anti-alias filter

laid out on the PCB. The filter does not have capacitors C33-C36. In designs where such filters

are desired, the capacitors can be manually loaded by the user.

NOTE: The coupled routing and the anti-alias filters might limit the data speeds when used

for digital signals. The XADC core within the Artix-7 is a dual channel 12-bit analog-to-digital

converter capable of operating at 1

MSPS. Either channel can be driven by any of the auxiliary analog input pairs connected to

the JXADC header. The XADC core is controlled and accessed from a user design via the

Dynamic Reconfiguration Port (DRP). The DRP also provides access to voltage monitors that

are present on each of the FPGA's power rails, and a temperature sensor that is internal to the

FPGA. For more information on using the XADC core, refer to the Xilinx document titled "7

Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-

to-Digital Converter."

43

4.2.11 BUILT IN SELF TEST

A demonstration configuration is loaded into the SPI Flash device on the Basys 3 board during

manufacturing. The source code and prebuilt bitstream for this design are available for

download from the Digilent website. If the demo configuration is present in the SPI Flash

device and the Basys 3 board is powered on in SPI mode, the demo project will allow basic

hardware verification. Here is an overview of how this demo drives the different onboard

components:

• The user LEDs are illuminated when the corresponding user switch is placed in the

on position.

• The VGA port displays feedback from a USB Mouse.

• Connecting a mouse to the USB-HID Mouse port will allow the pointer

on the VGA display to be controlled.

• On power-up, each digit of the seven-segment display will display a

counter output from 0-9 that increments once a second.

• Pressing BTNU, BTNL, BTNR, or BTND will cause a digit of the seven-segment

display to go blank.

• Pressing BTNC will reset the design.

• On power-up, a welcome message is sent over the UART. Also, every time a button

is pressed a message is sent. The UART can be connected to using a terminal

program with 9600 Baud, 8 data bits, 1 stop bit, and no parity.

All Basys 3 boards are 100% tested during the manufacturing process. If any device on the

Basys 3 board fails test or is not responding properly, it is likely that damage occurred during

transport or during use. Typical damage includes stressed solder joints and contaminants in

switches and buttons resulting in intermittent failures. Stressed solder joints can be repaired

by reheating and reflowing solder and contaminants can be cleaned with off-the-shelf

electronics cleaning products. If a board fails test within the warranty period, it will be replaced

at no cost. Contact Digilent for more details.

4.3 DEVELEPMENT FLOW

The simplified development flow of an FPGA-based system is shown below. The left portion

of the flow is the refinement and programming process, in which a system is transformed from

an abstract textual HDL description to a device cell- level configuration and then downloaded

to the FPGA device. The right portion is the validation process, which checks whether the

44

system meets the functional specification and performance goals. The major steps in the flow

are:

Fig 32 Development flow

a) Design Entry: Design the system and derive the HDL file(s). We may need to add a

separate constraint file to specify certain implementation constraints.

b) RTL Simulation: Develop the test bench in HDL and perform RTL (Register Transfer

Level) simulation. The RTL term reflects the fact that the HDL code is done at the register

transfer level.

 c)Synthesis: The synthesis process is generally known as logic synthesis, in which the

software transforms the HDL constructs to generic level components, such as simple logic

gates and FFs.

d)Implementation: The implementation process consists of three smaller processes: translate

map, and place and route. The translate process merges multiple design files to a single netlist.

The map process, which is generally known as technology mapping, maps the generic gates

in the netlist to FPGA logic cells and IOBs. The place and route process, which is generally

known as placement and routing, derives the physical layout inside the FPGA chip. It places

the cells in physical locations and determines routes to connect various signals. In the Xilinx

flow, static timing analysis, which determines various timing parameters, such as maximal

propagation delay and maximal clock frequency, is performed at the end of the

implementation process.

45

e) Generate and download the programming file: In this process, a configuration

file is generated according to the final netlist. This file is downloaded to an FPGA device

serially to configure the logic cells and switches. The physical circuit can be verified

accordingly.

The optional functional simulation can be performed after synthesis, and the optional timing

simulation can be performed after implementation. Functional simulation uses a synthesized

netlist to replace the RTL description and checks the correctness of the synthesis process.

Timing simulation uses the final netlist, along with detailed timing data, to perform

simulation. Because of the complexity of the netlist, functional and timing simulation may

require a significant amount of time. If we follow good design and coding practices, the HDL

code will be synthesized and implemented correctly. We only need to use RTL simulation to

check the correctness of the HDL code and use static timing analysis to examine the relevant

timing information. Both functional and timing simulations can be omitted from the

development flow.

4.4 Overview of VERILOG

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model

electronics systems. It is most commonly used in the design and verification of digital circuits

at the regular – transfer level of abstraction. It is also used in the verification of analog circuits

and mixed signal circuits HDLs allows the design to be simulated earlier in the design cycle

in order to correct errors or experiment with different architectures. Designs described in HDL

are technology independent, easy to design and debug, and are usually more readable than

schematics, particularly for large circuits.

Verilog can be used to describe designs at four levels of abstraction:

Algorithmic level (much like a code if, case and loop statements).

• Register transfer level (RTL uses registers connected by Boolean equations

• Gate level (interconnected AND, NOR etc.).

• Switch level (the switches are MOS transistors inside gates).

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy,

and communicate with other modules through a set of declared input, output and bidirectional

ports. Internally, a module can contain any combination of the following: net/variable

declarations (wire, reg, integer etc.), concurrent and sequential statement blocks and instances

of other modules (sub – hierarchies).

46

4.4.1 Features of Verilog HDL

Verilog HDL offers many useful features for hardware design

• Verilog (verify logic) HDL is a general-purpose hardware description language

that is easy to learn and use. It is similar in syntax to the C programming language.

Designers with C programming experience will find it easy to learn Verilog HDL.

• Verilog HDL allows different levels of abstraction to be mixed in the same model.

Thus, a designer can define a hardware model in terms of switches, gates, RTL or

behavioral code. Also, a designer needs to learn only one language for stimulus

and hierarchical design.

• Most popular logic synthesis tools support Verilog HDL. This makes it the

language of choice for designers.

• All fabrication vendors provide Verilog HDL libraries for post logic synthesis

simulation. Thus, designing a chip in Verilog HDL allows the widest choice of

vendors.

• The programming language interface (PLI) is a powerful feature that allows the

user to custom C code to interact with the internal data structures of Verilog.

Designers can customize a Verilog HDL simulator to their need with the

Programming language interface (PLI).

4.4.2 Module Declaration

A module is the principal design entity in Verilog. The first line of a module declaration

specifies the name and port list (arguments). The next few lines specifies the I/O type (input,

output or in out) and width of each port. The default port width is 1 bit. Then the port variables

must be declared wire, reg. The default is wire. Typically, inputs are wire since their data is

latched outside the module. Outputs are type reg if their signals were stored inside an always

or initial block.

Syntax

Module model name (port list)

Input[msb:lsb] input_port_list;

Output[msb:lsb] output_port_list;

inout[msb:lsb] inout_port_list;

…………Statements…………….

endmodule

47

Example

module add sub (add, in1, in2, out);

input add;

input [7:0]in, in2;

wire in1, in2;

output [7:0]out;

reg out;

…………..Statements…………

endmodule

Verilog has four levels of modeling:

1) The Switch level modeling.

2) Gate level modeling.

3) The Data flow level.

 4) The Behavioral level.

1)Switch level modeling

Switch level modeling forms the basic level of modeling digital circuits. The switches are

available as a primitives in Verilog; they are central to design description at this level. Basic

gates can be defined in terms of such switches. Switch-level modeling is a recently developed

design and analysis methodology for MOS VLSI circuits. At the switch level, important

features of MOS circuits can be directly modeled using a moderate number of discrete

parameters, including switch states, resistance, capacitance, and bidirectional signals. Switch-

level models, provide more accurate behavioral and structural information than gate-level

logical models, while avoiding the high computational cost associated with analog electrical

models. It provides a level of abstraction between the logic and analog-transistor levels of

abstraction, describing the interconnection of transmission gates which are abstractions of

individual mos and cmos transistors. The design of MOS technology electronic circuits

requires functional level simulations, as well as switch and circuit-level simulations.

Functional simulations are necessary to understand the behavior independently of the

implementation details.

48

Fig 33 CMOS inverter

2) Gate Level Modeling

Modelling done at this level is usually called gate level modelling as it involves gates and has

a one to one relation between a hardware schematic and the Verilog code. Verilog supports a

few basic logic gates known as primitives as they can be instantiated like modules since they

are already predefined. In general, gate-level modelling is used for implementing

lowest level modules in a design like, full-adder, multiplexers, etc. Verilog HDL

has gate primitives for all basic gates. Gate primitives are predefined in Verilog, which are

ready to use. Multiple input gate primitives include and, nand, or, nor, xor and xnor. Designer

should know the gate level diagram of the design.

Example

module or_gate (out, a, b, c, d);

input a, b, c, d;

wire x, y;

output out;

or or1(x, a, b);

or or2(y, c, d);

or orfinal(out, x, y);

endmodule

49

3)Data flow level modelling

Dataflow modelling provides the means of describing combinational circuits by their function

rather than by their gate structure. Dataflow modelling uses a number of operators that act on

operands to produce the desired results. Verilog HDL provides about 30 operator types.

Dataflow modelling uses continuous assignments and the keyword assign. A continuous

assignment is a statement that assigns a value to a net. The datatype net is used in Verilog

HDL to represent a physical connection between circuit elements. The value assigned to the

net is specified by an expression that uses operands and operators. As an example, assuming

that the variables were declared, a2-to-1 multiplexer with data inputs A and B, select input S,

and output Y is described with continuous assignment.

 assign Y= (A & S) | (B & S)

Example

The dataflow description of a 2-to-4-line decoder is shown in HDL below. The circuit is

defined with four continuous assignment statements using Boolean expressions, one for each

output. // Dataflow description of 2-to-4 line decoder with enable input (E) module decoder_df

(A,B,E,D);

 input A,B,E;

 output [3,:0] D;

 assign D[3] =~(~A & ~B & ~E);

 assign D[2] =~(~A & B & ~E);

 assign D[1] =~(A & ~B & ~E);

 assign D[0] =~(A & B & ~E);

endmodule

4)Behavioural level modelling

This is the highest level of abstraction provided by Verilog HDL. A module can be

implemented in terms of the desired design algorithm without concern for the hardware

implementation details. It specifies the circuit in terms of its expected behaviour. It specifies

the circuit in terms of its expected behaviour. It is the closest to a natural language description

of the circuit functionality, but also the most difficult to synthesize.

All that a designer need is the algorithm of the design, which is the basic information for any

design. This level simulates the behavioural level of the circuits and development rate in this

level is highest. Although the development rate in this abstraction level is high there are some

50

drawbacks such as the delay modelling is not possible. In practice any circuit is first

implemented in this level to understand the theoretical possibility of the circuit and then it is

implemented in at a lower level to analyse the practical aspects. This level of Verilog has

blocking and non-blocking assignment. Blocking assignment is sequential nature and using

the combination of both assignments, complex sequential can be modelled with ease.

The abstraction in this modelling is as simple as writing the logic in C language. This is a very

powerful abstraction technique. All that a designer needs are the algorithm of the design,

which is the basic information for any design. This level is very important because with the

increasing complexity of digital design, it has become vitally important to make wise design

decisions early in a project. Designers need to be able to evaluate the trade-offs of various

architectures and algorithms before they decide on the optimum architecture and algorithm to

implement in hardware. Only after the high-level architecture and algorithm are finalized,

designers start focusing on building the digital circuit to implement the algorithm. Most of the

behavioural modelling is done using two important constructs: initial and always. All the other

behavioural statements appear only inside these two structured procedure constructs.

Initial construct

The statements which come under the initial construct constitute the initial block. The initial

block is executed only once in the simulation, at time 0. If there are more than one initial

blocks, than all the initial blocks are executed concurrently. The initial construct is used as

follows:

Initial

Begin

Reset = 1'b0;

clk = 1'b1;

end

In the first initial block there is more than one statements hence they are written between begin

and end. If there is only one statement then there is no need to put begin and end.

Always construct

The statements which come under the always construct constitute the always block. The

always block starts at time 0, and keeps on executing all the simulation time. It works like an

infinite loop. It is generally used to model a functionality that is continuously repeated.

51

always

#5 clk = ~clk;

initial

clk = 1'b0;

The above code generates a clock signal clk, with a time period of 10units. The initial blocks

initiates the clk value to 0 at time 0. Then after every 5 units of time it is toggled, hence we

get a time period of 10units. This is the general way to generate a clock signal for use in

testbenches.

4.5 Overview of EDA (Electronic Design Automation) software

Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis

of HDL designs, superseding Xilinx ISE with additional features for system on a

chip development and high-level synthesis.

Setting up a Vivado project involves the following steps-

Creating a New Project

After launching Vivado, from the startup page click the “Create New Project” icon.

Alternatively, you can select File ➔ New project

The New Project wizard will launch, click the “Next>” button to proceed.

https://en.wikipedia.org/wiki/System_on_a_chip

52

Enter a project name and select a project location. Make certain there are NO SPACES in

either! It’s not a bad idea to only use letters, numbers, and underscores as well. If necessary

simply create a new directory for your Xilinx Vivado projects in your root drive (e.g.

C:/Vivado). You will likely always want to select the “create project sub-directory” check-

box as well. This keeps the things neatly organized with a directory for each project and helps

avoid problems. Click the “Next>" button to proceed.

53

Select the “RTL Project” radial and select “Do not specify sources at this time” check -box.

If you don’t select the check-box the wizard will take you through some additional steps to

optionally add pre existing items such as VERILOG or Verilog source files, Vivado IP blocks,

and. XDC constraint file for device pin amd timing configuration. For this first project you

will add necessary items later. Click the “Next>” button to proceed

Once you select the RTL project, Click on next button.

54

Click the “Finish” button and Vivado will proceed to create your project as specified.

STEPS FOR DESIGN ENTRY/ IMPLEMENTATION:

Working through the basic project flow

 The Vivado project window contains a lot of information, and the information

displayed can change depending on what part of the design currently have open as you work

through the steps of your project. Keep this in mind as you work through this guide, because

if you don’t see a specific sub window or sub window tab it’s possible you are’nt in the correct

part of the design.

 The “Flow Navigator” on the left side of the screen has all the major project phases

organized from top to bottom in their natural chronological order. You begin in the “project

manager” portion of the flow and the header at the top of the screen next to the flow navigator

reflects this. This header and the corresponded highlighted section in the flow navigator will

tell you which phase of the design you have opened.

Project Manager

Now click on “Add sources” under the project manager phase of the flow navigator.

55

Select the “Add or create design sources” radial and then click the “Next” button.

Click the “Create file” button or click the Green “+”symbol in the upper left corner and select

the “create file” option.

56

Make sure the options shown are selected in the “create source file” pop up, and for the sake

of following enter “blinky” for the file name. Click the ok button when finished.

Click the “finish button” and Vivado will then bring up the define module name

You can use the “define module” window to automatically write some of the verilog code.

Additional “I/O definitions” can be added by either clicking the green “+” symbol in the upper

left or by simply clicking on the next empty line.

Note that if you would rather write your own code from scratch you can just simply click the

57

“cancel” button and Vivado will create a completely blank Verilog source file inside your

project. If you click the “OK” button without defining any “I/O definitions” Vivado will still

write the basic Verilog code structure but the port definition will be empty and commented

and you can write down the required remaining program.

STEPS FOR CONSTRAINTS FILE CREATION

Click on “Add sources” under the project manager phase of the Flow navigator.

Select the “Add or create constraints” radial and then click the “Next>”button

Then appears a popup asking for file name of the constraint file. Assign name to the constraint

file and make sure that there are no spaces! and then click “OK”.

58

Write the bit file according to the requirement. The required memory locations are mapped to

the program variables.

The above written bit file is for half adder. The input variables a and b are mapped to input

switch locations and the output variables s, c are mapped to output LED locations. In this way

a bit file can be written according to our program requirements. We can also access locations

other than switches and LEDs like LCD display, clock, buttons and Pmod Headers. The Pmod

Headers are used for external interfacing.

After writing bit file click on “Run Implementation”

After successfully completing the implementation, a pop up appears as follows

59

Click on “Generate Bitstream” and then “OK”.

This is an indication for completion of the generation of the bitstream which appears on top

right corner.

Now we have to connect to hardware device to target the device

Click on “Open Hardware Manager” and then “OK”

60

Click on “Open Target” to target a device. The Open New Hardware Target wizard will

launch, click the “Next>” button to proceed.

Select the “local server(target is on local machine)” from the drop down if it isn’t already, and

then click the “Next>”button to proceed. Vivado will work for a moment to find any valid

target devices connected to your local machine.

61

Select your specific Hardware device. Click the “Finish” button and Vivado will attempt to

connect to your specified hardware. Now click “Program device” under the program and

debug phase of the Flow Navigator and then your specific device from the menu that appears.

After sometime the device will be programmed and the required outputs (LED’s) can be

obtained by varying the inputs(switches)

62

CHAPTER 5

RESULTS AND CONCLUSIONS

5.1 Software: Xilinx Vivado

• We have written code for design of CSD multiplier using verilog language.

• Verilog is a Hardware Description Language which is used to design and describe

digital circuits.

• The Verilog HDL is an IEEE standard - number 1364. Verilog is intended to be used

for verification through simulation, for timing analysis, for test analysis and for logic

synthesis.

• Verilog is an easier language as its syntax is based on C language. Verilog supports a

design at many levels of abstraction. The major three are? Behavioral level, Register-

transfer level and Gate level. We have simulated the code in Vivado software and

analyzed the results.

5.2 Simulation Results of CSD Multiplier

a) RTL Diagram

Register Transfer Level (RTL) is an abstraction for defining the digital portions of a design.

The figure below represents the RTL diagram of 8-bit CSD multiplier designed.

FIG 34 RTL diagram

63

b) Synthesized Schematic Diagram

The Synthesized Schematic diagram for the above RTL diagram is as shown. It represents

how the actual components are connected on the artix-7 Fpga board.

FIG 35 Synthesized schematic diagram

c)Area Utilization Report

 FIG 36 LUT Table.

64

 FIG 37 slice logic table

 FIG 38 Logic and memory table

65

d)Power Report

 FIG 39 Power Report

5.3 Simulation Output

FIG 40 Simulation output results

5.4 Hardware Implementation

In this work, all proposed models are implemented on Basys3 Artix7 FPGA with the help of

Xilinx Vivado. For implementation first we have to map original input and output ports with

board I/Os by generating constraint file. Next, the program can be dumped to FPGA kit to

verify the simulation results practically.

66

 FIG 41 CSD multiplication timing summery.

 FIG 42 General multiplication timing summery.

67

 FIG 43 Basys 3 FPGA Kit Output

68

CONCLUSION

In digital signal processing multiplication is a key operation which determines the overall

performance of the multiplier. Using Floating point representation in multiplication makes

the operation accurate than using normal multiplication. In this project we have performed

floating point multiplication using canonical signed digit algorithm and analysed the power

and synthesis results. And we compared the results with normal binary multiplication and we

observed that CSD multiplication taking less time compared to General multiplication.

69

REFERENCES

1. Mrs. Pushpawati Changlekar, Mrs. Sujatha.S, Mrs. P. Anita / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1912-1915.

2. International Journal of Advanced Research in Electronics and Communication

Engineering (IJARECE) Volume 2, Issue 11, November 2013.

3. International Journal of Innovative Research in Electrical, Electronics,

Instrumentation and Control Engineering ISO 3297:2007 Certified Vol. 5, Issue 6,

June 2017.

4. Binary Canonic Signed Digit Multiplier for High-speed Digital Signal Processing

Daniele Lo Iacono and Marco Ronchi. STMicroelectronics, Advanced System

Technology. Centro Direzionale Colleoni, La Dialettica. 20041 Agate Brianza, Italy.

5. Jaiswal M. K., Hayden K.H.: “DSP48E Efficient Floating Point Multiplier

Architectures on FPGA”, international conference on VLSI Design and Embedded

Systems. pp.455-460,2017

6. Phillips B, Burgess N., 2004 June, “Minimal weight digit set conversions”, IEEE

Transactions on Computers, June 2004, Volume 53, Issue 6, pp.666–677.

7. Soderstrand M.A., 2003 May, “CSD multipliers for FPGA DSP applications”,

Proceedings of the International Symposium on Circuits and Systems (ISCAS),

Volume 5, pp.469–472.

8. Iacono D.L. and Ronchi M., 2004, “Binary canonic signed digit multiplier for high-

speed digital signal processing”, Proceedings of the 47th IEEE International Midwest

Symposium on Circuits and Systems, Volume 2, pp. 205–208.

